首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2013年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A series of acrylic terpolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si and t-BuMe2Si together with cubane-1, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA are abbreviated as TMSiEMA, TESiEMA and TBSiEMA respectively. Cubane-1, 4-dicarboxylic acid (CDA) linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking terpolymerization of the methyl methacrylate (MMA) and methacrylic acid (MAA) with two different molar ratios of organosilyl monomers and CA was carried out at 60–70 C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature (Tg) of the network polymers was determined calorimetrically. The Tg of network terpolymers increases with increasing of cross-linking degree. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). The gels swelled more in SIF than in SGF. The swelling behaviour of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in pH 1 or an increase in gel swelling in pH 7.4. Based on the great difference in swelling ratio at pH 1 and 7.4 for P-1, P-6 and P-10 appear to be good candidates for colon-specific drug delivery.  相似文献   
2.
In this work, polyacrylamide/multi-walled carbon nanotubes (MWCNT) solution is electrospun to nanocomposite nanofibrous membranes for acetylcholinesterase enzyme immobilization. A new method for enzyme immobilization is proposed, and the results of analysis show successful covalent bonding of enzymes on electrospun membrane surface besides their non-covalent entrapment. Fourier transform infrared spectroscopy, mechanical and thermal investigations of nanofibrous membrane approve successful cross-linking and enzyme immobilization. The enzyme relative activity and kinetic on both pure and nanocomposite membranes is investigated, and the results show proper performance of designed membrane to even improve the enzyme activity followed by immobilization compared to free enzyme. Scanning electron microscopy images show nanofibrous web of 3D structure with a low shrinkage and hydrogel structure followed by enzyme immobilization and cross-linking. Moreover, the important role of functionalized carbon nanotubes on final nanofibrous membrane functionality as a media for enzyme immobilization is investigated. The results show that MWCNT could act effectively for enzyme immobilization improvement via both physical (enhanced fibers’ morphology and conductivity) and chemical (enzyme entrapment) methods.
Figure
Mechanism for APTS surface modification of nanofibrous nanoweb for enzyme immobilization  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号