首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
化学   73篇
力学   6篇
数学   4篇
物理学   19篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
1.
Hofmann-type modified clathrate hosts containing 2- or 3-chloropyridine molecules attached to metal (II) tetracyanocadmate frame, with a given formula: M(Clpy)2Cd(CN)4 where M = Mn, Ni or Cd; Clpy = 2- or 3-chloropyridine, have been synthesised for the first time. Their FT-IR spectra are reported in the 400–4000 cm-1 region. All the vibrational modes of coordinated Clpy are characterised. The spectral features of the compounds studied are found to be similar to each other indicating that they have analogous structures. The coordination effect on the Clpy modes is analyzed.  相似文献   
2.
The vibrational wavenumbers and the fundamental modes of 2,2′-biquinoline were obtained by density functional theory (DFT) with the B3LYP functional using the 6-31G(d,p) basis set. The calculated wavenumbers were scaled by a single factor of 0.965 to correct them for vibrational anharmonicity, but the force constants were overestimated. Normal coordinate analysis of the molecule was also carried out by using the force field of the quinoline molecule and the force field parameters of quinoline are shown to be transferable to 2,2′-biquinoline. The potential energy distribution associated with the normal modes is also given. The theoretical wavenumbers are found to be in good agreement with the experimental data.  相似文献   
3.
The first silver(I) complex of saccharinate (sac) with pyridine (py), [Ag(sac)(py)]n has been synthesized and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffractometry. The complex crystallizes in chiral, trigonal space group P3121 (No. 152) with unit cell parameters of a = 11.2605(2) Å, c = 17.3300(4) Å, V = 1903.02(6) Å3 and Z = 6. [Ag(sac)(py)]n contains monomeric [Ag(sac)(py)] units linked into infinite helices by way of Ag⋅sAg interactions [d(Ag⋅sAg) = 2.909(2) and 2.985(1) Å]. The distorted square-planar environment of Ag is completed by an N-bonded sac [Ag—N = 2.084(2) Å] and a py molecule [Ag—N = 2.116(2) Å]. The Nsac—Ag—Npy angle is 173.85(10). The one-dimensional chains are crosslinked by C—H⋅sO interactions involving the carbonyl and sulfonyl O atoms of sac and aromatic-ring hydrogen atoms of both sac and py. The thermal stability of the title complex was investigated using thermogravimetry and differential thermal analysis in a static atmosphere of air. The first decomposition stage between 90 and 160C corresponds to removal of the py molecule in a single stage, while the degradation of the sac moiety occurs at two stages in the temperature range 370–515C, giving an end product of metallic Ag.  相似文献   
4.
Some surface sediment samples, collected from 53 sampling sites of the Saros Gulf, were analyzed quantitatively by radioisotope energy dispersive X-ray fluorescence (EDXRF) and instrumental neutron activation analysis (INAA). Results indicated some correlations between Rb and Sr (r = 0.64), Fe2O3 and MnO (r = 0.59), Th and La (r = 0.71), Th and Ce (r = 0.64), Th and Sm (r = 0.60), concentration pairs. U and Th results are found to be compatible with those given in the literature for marine sediments.  相似文献   
5.
The adsorption of 4,4-bipyridyl by natural sepiolite and smectite group clay minerals (bentonite, hectorite and saponite) from Anatolia (Turkey) has been studied using vibrational spectroscopy. Investigation of Fourier-transform infrared and Fourier-transform Raman spectra of adsorbed 4,4-bipyridyl indicate the presence of chemisorbed species. However, any evidence for the generation of anionic species on the surface of the phyllosilicates has not been detected. It is proposed that the adsorbed bipyridyl molecules on sepiolite are centrosymmetric and H-bonded to the surface hydroxyls through both the nitrogen lone pairs as bidentate ligands. The adsorbed bipyridyl molecules on the smectite group clays are coordinated to exchangeable cations both directly and also indirectly through water as monodentate ligands. XRD patterns of the clays studied are also recorded.  相似文献   
6.
A silver(I)-saccharinato (sac) complex with nicotinamide (nia), [Ag(sac)(nia)] n has been synthesized and characterized by elemental analysis, IR spectroscopy, DTA-TG analyses and single crystal X-ray diffractometry. The complex crystallizes in monoclinic space group P21/n with unit cell parameters of a=7.0258(4) Å, b=24.3784(10) Å, c=8.4301(5) Å, β=109.407(5)°, V=1361.85(13) Å3 and Z=4. [Ag(sac)(nia)] n contains [Ag(sac)(nia)] units, which are doubly bridged by both nia and sac ligands, leading to a linear one-dimensional polymeric chains running along the a axis. The silver(I) ion has a highly distorted AgN2O2 tetrahedral geometry and the coordination polymer exhibits relatively short intra-chain ligand supported Ag···Ag separations of 3.1593(4) Å. The one-dimensional chains are crosslinked by N–H···O hydrogen bonds and aromatic π(sac)···π(nia) stacking interactions to generate a two-dimensional layer structure. IR spectra and thermal analysis data are in agreement with the crystal structure.  相似文献   
7.
Infrared (4000–200 cm?1) and Raman (3500–300 cm?1 ) spectra are reported for metal(II) halide and thiocyanate 4-methylpyridine complexes of the following stoichiometries: (MX2(4-Mepy)2) {M = Mn, Co, Cu or Zn, X = Cl or Br; M = Mn, Ni or Zn, X = NCS}; (MX2(4-Mepy)4) {M = Mn, Fe, Co or Ni, X = Cl or Br; M = Mn, Fe, Co, W or Cu, X = NCS}. For a given series of isomorphous complexes there is a correlation between the sum of the differences between the liquid and ligand values of the ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9, ν10, ν12, ν13 and ν14 modes of 4-methylpyridine and the strength of the metal-nitrogen bond. Comparison of the shift values of pyridine and 4-methylpyridine complexes supports the suggestion that, unlike the situation in the pyridine complexes, back-donation from the metal to the ligand is unimportant in the 4-methylpyridine complexes.  相似文献   
8.
Three dimensional host lattices have been developed by forming bridges with bidentate pyrazine molecules between adjacent tetracyanonickelate polymeric layers of Ni(II) or Cd(II). The Fourier-transform IR and Raman spectra (4000-200 cm–1) of the compounds with the general formula M(pyz)Ni(CN)4, (where M = Ni or Cd) are reported. These host lattices can include benzene molecules but it is found that aniline molecules cannot be included in these structures. They, however, form complexes with the formula M(an)2Ni(CN)4, by replacing pyrazine ligands. A monodentate pyrazine complex of Cd(II) with the formula Cd(pyz)2Ni(CN)4 has also been prepared.  相似文献   
9.
Crystallization of the title compound, di‐μ‐pyridazine‐1κ2N:2κ2N′‐bis­[(2,3‐dihydro‐3‐oxobenzisosulfonazolato‐κN)silver(I)], [Ag2(C7H4NO3S)2(C4H4N2)2], from acetonitrile yields both monoclinic, (I), and triclinic, (II), polymorphs. In both forms, the silver(I) ions have a slightly distorted trigonal AgN3 coordination geometry and are doubly bridged by two neutral pyridazine (pydz) ligands, generating a centrosymmetric dimeric structure. The saccharinate (sac) ligands are N‐coordinated. The dihedral angles between the sac and pydz rings are 8.43 (7) and 7.94 (8)° in (I) and (II), respectively, suggesting that the dimeric mol­ecule is nearly flat. The bond geometry is similar in both polymorphs. In (I), the dimers inter­act with each other via aromatic πsac–πpydz stacking inter­actions, forming two‐dimensional layers, which are further crosslinked by weak C—H⋯O inter­actions. Compound (II) exhibits similar C—H⋯O and π–π inter­actions, but additional C—H⋯π and π⋯Ag inter­actions help to stabilize the packing of the dimers.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号