首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
晶体学   2篇
  2022年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Glasses were prepared in the pseudo-binary system (1 − x)AgPO3-xWO3 (0≤ × ≤ 0.6 mol%). The structural evolution of the vitreous network was studied as a function of composition by thermal analysis, Fourier Transform Infrared spectroscopy (FTIR), Raman scattering, high resolution 31P solid state NMR and XANES at the W-L1 absorption edge. For compositions with x ranging from 0 to 0.5 a pronounced increase in the glass transition temperature is observed, suggesting a significant increase in the glass network connectivity. At the same time Raman spectra indicate that tungsten atoms are linked to non-bridging oxygen atoms (W-O- or W=O bonded species) whereas the 31P MAS-NMR spectra indicate the successive formation of new P-O-W linkages. The formation of some anionic tungsten sites (if these are revealed by the presence of W-O terminal bonds) implies an increase in the average degree of polymerization of the phosphate network, which is consistent with the compositional evolution of the 31P MAS-NMR spectra at low x values. For higher x-values, the Raman spectra indicate the presence of W-O-W linkages. W-L1 XANES data indicate that at least 90% of tungsten atoms are octahedrally coordinated.  相似文献   
2.
Vitreous samples (1-x) AgPO3x MoO3 (0  x  0.5) were prepared by conventional melt-quenching and characterized by Differential Scanning Calorimetry (DSC). The structural evolution of the vitreous network was monitored by 31P solid state nuclear magnetic resonance and Raman scattering, and assignments were aided by corresponding studies on the model compound AgMoO2PO4. The 31P MAS-NMR data differentiate between species having two, one, and zero P―O―P linkages (Q(2) Q(1), and Q(0) species), respectively. Interatomic connectivities involving these units are revealed by two-dimensional INADEQUATE data, utilizing the formation of double quantum coherences mediated by indirect 31P–31P spin–spin interactions via P―O―P linkages. As this method discriminates against isolated P atoms, it also serves as an important spectral editing tool for constraining lineshape fits. 95Mo NMR data and Raman spectra suggest that the Mo species are most likely six-coordinate, forming four P―O―Mo linkages and are otherwise invariant with composition, except at MoO3 contents  40 mole %, where some Mo―O―Mo bonding and/or clustering is observed.  相似文献   
3.
Glasses having the composition (100 - x)As2P2S8-xGa2S3 with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (Tg) and the stability parameter against crystallization (Tx - Tg) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and 31P nuclear magnetic resonance. On the basis of the observed vibrations and the strength of the 31P-31P homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x or= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS 4/2 unit (Q4) species carrying a single positive formal charge.  相似文献   
4.
Vitreous samples were prepared in the (100 - x)% NaPO(3)-x% MoO(3) (0 相似文献   
5.

Millions of tons of fruit waste are generated globally every year from agricultural residues, which makes it essential to find alternative uses to increase their aggregate value and reduce their environmental impact. The present study aimed to explore pineapple peel as an alternative source of cellulose by evaluating its chemical composition and physical properties, which are essential for applications. A sequence of chlorine-free treatments was applied to purify the cellulose by removing noncellulosic components in the fresh pineapple peels. The cellulosic pulp was characterized regarding its chemical composition and characterized by Nuclear Magnetic Resonance (13C NMR), X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis to determine crystallinity, structural properties, morphology, and thermal characteristics, respectively. The results revealed that the pineapple peel amorphous segments containing hemicelluloses and lignin were extensively removed with increasing chemical treatment steps, leading to increased purity, crystallinity index, and thermal stability of the extracted cellulose pulps. The maximum thermal degradation (150 °C) and crystallinity index (80.9%) were determined for the cellulosic material obtained from the second bleaching (2B) step. The cellulose content increased from 24% in the starting material (fresh pineapple peel) to 80.9% in the bleached cellulose (2B). These results indicate that the extracted cellulose from pineapple peel has characteristic for applications such as the production of cellulose nanocrystals due to the high crystallinity.

Graphical abstract
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号