首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   9篇
化学   211篇
晶体学   7篇
力学   6篇
数学   14篇
物理学   52篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   8篇
  2017年   11篇
  2016年   13篇
  2015年   13篇
  2014年   15篇
  2013年   20篇
  2012年   13篇
  2011年   31篇
  2010年   16篇
  2009年   7篇
  2008年   12篇
  2007年   12篇
  2006年   22篇
  2005年   14篇
  2004年   11篇
  2003年   7篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1940年   1篇
  1891年   1篇
排序方式: 共有290条查询结果,搜索用时 218 毫秒
1.
2.
A series of ferrocene‐containing liquid‐crystalline polyphosphonates with an even number of methylene groups are reported. All the polymers gave birefringent melts. The mesophase was identified as transparent with an increase in the spacer. The effects of pendant substitution and the spacer were studied with thermogravimetric analysis and differential scanning calorimetry. The effects of the phosphonate group in the spacer and the ferrocene ester group in the mesogen were examined. The presence of a steplike mesogenic structure and a pendant phenyl group in the spacer led to reductions in the glass‐transition and melting temperatures. The ferrocene moiety in the mesogen might be one of the reasons for the increased thermal stability and decreased liquid crystallinity. An energy‐minimized structure for the mesogenic and spacer segments was created with computer‐modeling programs, and it suggested the reason for the reductions in the glass‐transition and melting temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2256–2263, 2002  相似文献   
3.
4.
The potential energy surface (PES) of thionylimide has been searched using ab initio MO and density functional calculations. The electronic structures of the isomers of HNSO have been studied using the HF/6‐31+G*, MP2(full)/6‐31+G*, and B3LYP/6‐31+G* levels. Final energies of these molecules have been calculated at the high‐accuracy G2 and CBS‐Q levels. The probable pathways of isomerization of thionylimide to its isomers (e.g., thiocyanic acid, HONS, nitrosothiols) have been explored by studying the three‐ or four‐membered transition states. This study identified total eight possible isomers ( 1–8 ) of HNSO, of which four ( 1–4 ) have already been realized experimentally. Of the remaining four ( 5–8 ), at least two ( 5, 7 ) can be generated experimentally. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   
5.
6.
The objective of this study was to assess the cytotoxicity of water-dispersible CuO nanoparticles by quantifying the reactive oxygen species (ROS)-related genes (glutathione S-transferase (GST) and catalase) using real-time polymerase chain reaction (RT-PCR). Monodisperse CuO nanoparticles of 14 nm in size were used. Cytotoxicity of CuO nanoparticles was evaluated under in vitro condition at different concentrations (10, 50, and 100 μg/ml) and incubation times (12, 24, and 48 h) with human cancer cell lines (breast cancer epithelial cells). The genetic level cytotoxic screening produced consistent results showing that GST and catalase ROS gene expression was maximized in 24 h incubation at 100 μg/ml concentration of CuO nanoparticles. However, the cytotoxicity of water-dispersible CuO nanoparticle was not significant compared with control experiments, demonstrating its high potential in the application of nanomedicines for a diagnostic and therapeutic tool.  相似文献   
7.
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6Cl3 on the smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites.
Figure
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6.Cl3 on smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites. Graphical abstract shows the Au surface smoothening as a consequence of Prussian blue-gold nanocomposite (Au-PB) formation and removal  相似文献   
8.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   
9.
Research on Chemical Intermediates - Triphenylamine and methoxy substituted triphenylamine-based dyes are examined by density-functional theory and time-dependent density-functional theory. The...  相似文献   
10.
Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons’ spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high‐spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300 K and vanishes at temperatures below about 150 K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high‐spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号