首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2020年   2篇
  2018年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.

α-Amylase and α-Glucosidase are important therapeutic targets for type II diabetes. The present focus of our study is to elucidate the hypoglycemic activity of novel compounds through in vitro and in silico studies. Here, we synthesized the nitro acridines (3a–3c), amino acridines (4a–4c), and nitro phenylquinoline (3d) and amino phenylquinoline (4d) using a multi-step reaction protocol in good yields. All the above derivatives were screened for molecular docking, α-Amylase and α-Glucosidase inhibitory activities utilizing acarbose as standard drug. In silico studies were performed to explore the binding ability of compounds with the active site of α-Amylase and α-Glucosidase enzymes. The in vitro antihyperglycemic report of 3c exhibits the maximum inhibitory activity with IC50 values of 200.61?±?9.71 μmol/mL and 197.76?±?8.22 μmol/mL against α-Amylase and α-Glucosidase, respectively. Similarly, the compound 3a exhibits IC50 values of 243.78?±?13.25 μmol/mL and 296.57?±?10.66 μmol/mL, and 4c exhibits IC50 values of 304.28?±?3.51 μmol/mL and 278.86?±?3.24 μmol/mL with a significant p?<?0.05 in both enzyme inhibitions. In addition, the presence of diverse functional moieties in synthesized compounds may provide a strong inhibitory action against the abovementioned enzymes compared with standard acarbose inhibition (IC50, 58.74?±?3.68 μmol/mL and 49.39?±?4.94 μmol/mL). Also, the docking studies provided an excellent support for our in vitro studies. The outcome of these studies recommends that the tested compounds might be treated as potential inhibitors for the starch hydrolyzing enzymes in type II diabetes.

  相似文献   
2.
Research on Chemical Intermediates - The precursor compound 3-fluoro-4-morpholinoaniline (7) is an important intermediate of the antibiotic drug linezolid and was synthesized initially by the...  相似文献   
3.
Abstract

A new series of α-thiazolyl aminomethylene bisphosphonates were synthesized by a three component reaction of 4-aryl substituted thiazol-2-amine with different dialkyl/aryl phosphites and triethyl orthoformate in the presence of Ag NPs (nano particles) as a catalyst under solvent free conditions. All the synthesized target compounds were characterized by 1H, 13C, 31P, mass and elemental analysis. The target compounds were screened for their in vitro antioxidant, antibacterial and antifungal activity. Molecular docking studies were also performed. The results revealed that among the synthesized compounds tetramethyl(((4-(4-methoxyphenyl)thiazol-2-yl)amino) methylene)bis(phosphonate) (5d), tetramethyl(((4-(4-fluorophenyl)thiazol-2-yl)amino) methylene) bis(phosphonate) (5h), and tetramethyl(((4-(4-bromophenyl)thiazol-2-yl)amino)methylene) bis (phosphonate) (5j) showed remarkably higher antioxidant activity by DPPH and H2O2 than the standard ascorbic acid. Compounds tetramethyl(((4-phenyl thiazol-2-yl)amino) methylene) bis(phosphonate) (5a), 5d, 5h and tetraethyl(((4-(4-bromophenyl)thiazol-2-yl) amino)methylene)bis (phosphonate) (5k) showed good antibacterial activity. 5a, 5d, and 5h also showed rather higher antifungal activity than the standard flucanozole. Computational docking methods have been used to predict how several aminomethylene bisphosphonate derivatives compete against the inhibitor BPH-1330 at the crystal enzyme structure of the 4H3A protein active site and how R and R1 influence their binding ability.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号