首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   5篇
化学   139篇
数学   7篇
物理学   5篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   10篇
  2006年   15篇
  2005年   6篇
  2004年   8篇
  2003年   9篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1988年   3篇
  1984年   1篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1911年   1篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
1.
The synthesis of a series of bis‐pyrazolo[3,4‐b:4′,3′‐e]pyridines ( 3 ) in the reaction of 5‐amino‐3‐methyl‐1‐phenylpyrazole ( 1 ) with aldehydes ( 2 ) under microwave irradiation and solvent‐free conditions is described. The structure elucidation of the products is based on detailed nmr analysis of experiments such as 1H‐COSY, NOESY, DEPT, HSQC and HMBC. These compounds showed moderate antifungal in vitro activity against dermatophytes.  相似文献   
2.
The 2,2'-azobis(isobutyronitrile)(AIBN)-induced autoxidation of gamma-terpinene (TH) at 50 degrees C produces p-cymene and hydrogen peroxide in a radical-chain reaction having HOO* as one of the chain-carrying radicals. The kinetics of this reaction in cyclohexane and tert-butyl alcohol show that chain termination involves the formal HOO. + HOO. self-reaction over a wide range of gamma-terpinene, AIBN, and O2 concentrations. However, in acetonitrile this termination process is accompanied by termination via the cross-reaction of the terpinenyl radical, T., with the HOO. radical under conditions of relatively high [TH] (140-1000 mM) and low [O2] (2.0-5.5 mM). This is because the formal HOO. + HOO. reaction is comparatively slow in acetonitrile (2k approximately 8 x 10(7) M(-1) s(-1)), whereas, this reaction is almost diffusion-controlled in tert-butyl alcohol and cyclohexane, 2k approximately 6.5 x 10(8) and 1.3 x 10(9) M(-1) s(-1), respectively. Three mechanisms for the bimolecular self-reaction of HOO. radicals are considered: 1) a head-to-tail hydrogen-atom transfer from one radical to the other, 2) a head-to-head reaction to form an intermediate tetroxide, and 3) an electron-transfer between HOO. and its conjugate base, the superoxide radical anion, O2-.. The rate constant for reaction by mechanism (1) is shown to be dependent on the hydrogen bond (HB) accepting ability of the solvent; that by mechanism (2) is shown to be too slow for this process to be of any importance; and that by mechanism (3) is dependent on the pH of the solvent and its ability to support ionization. Mechanism (3) was found to be the main termination process in tert-butyl alcohol and acetonitrile. In the gas phase, the rate constant for the HOO. + HOO. reaction (mechanism (1)) is about 1.8 x 10(9) M(-1) s(-1) but in water at pH< or =2 where the ionization of HOO. is completely suppressed, this rate constant is only 8.6 x 10(5) M(-1) s(-1). The very large retarding effect of water on this reaction has not previously been explained. We find that it can be quantitatively accounted for by using Abraham's HB acceptor parameter, beta(2)(H), for water of 0.38 and an estimated HB donor parameter, alpha(2)(H), for HOO. of about 0.87. These Abraham parameters allow us to predict a rate constant for the HOO. + HOO. reaction in water at 25 degrees C of 1.2 x 10(6) M(-1) s(-1) in excellent agreement with experiment.  相似文献   
3.
Hydrophobic interaction chromatography coupled online with chemical vapour atomic fluorescence spectrometry (HIC-CVGAFS) has been optimized for the analysis of thiolic proteins in denaturing conditions. Proteins are pre-column simultaneously denatured and derivatized in phosphate buffer solution containing 8.0 mol dm−3 urea and p-hydroxymercurybenzoate (PHMB) and the derivatized denatured proteins are separated on a silica HIC Eichrom Propyl column in the presence of 8.0 M urea in the mobile phase. Post-column online reaction of derivatized denatured proteins with bromine, generated in situ by KBr/KBrO3 in HCl medium, allowed the fast conversion of the uncomplexed PHMB and of the PHMB bound to proteins to inorganic mercury also in presence of urea. Hg2+, present in solution as Hg2+-urea complex, is selectively detected by AFS in a Ar/H2 miniaturized flame after sodium borohydride reduction to Hg. Under optimized conditions, online bromine treatment gives a 100±2% recovery of both free and protein-complexed PHMB. Denatured glyceraldehyde-3-phosphate dehydrogenase, aldolase, lactate dehydrogenase, trioso phosphate isomerase and β-lactoglobulin have been examined. As the sensitivity and limit of detection of proteins in the HIC-CVGAFS apparatus depends on number of SH groups reacting with PHMB, the denaturation process, which increases the number of PHMB-reactive thiolic groups in proteins, improves the analytical performances of the described system in protein analysis. The detection limit for the denatured proteins examined was found in the range of 10−10-10−12 mol dm−3, depending on the considered protein, with linear calibration curves spanning over four decades of concentration.  相似文献   
4.
Summary Complexes of general formula MLmCl2 · nH2O, where M=cobalt(II) or nickel(II); L=2-(4-methyl, 2-pyridyl)-benzimidazole (mpbi), 2-(4-methyl, 2-pyridyl)benzothiazole (mpbt), 2-(4-methyl, 2-pyridyl)benzoxazole (mpbo), 2-(4-methyl, 2-quinolyl)benzoxazole (mqbo), or 2-(4-methyl, 8-quinolyl)benzoxazole (mqbo); m=1,2; n=0–3, were prepared and characterized by t.g.a., conductance and magnetic measurements, i.r. and diffuse-reflectance electronic spectra.All the ligands behave as bidentate and coordinate through the pyridine- and isoxazole-nitrogen atoms.The nickel complexes have distorted octahedral or fivecoordinate structures. The cobalt complexes arepseudo-tet- rahedral except Co(mpbo)2Cl2·2H2O where the metal is six-coordinate.  相似文献   
5.
Summary Complexes of cobalt(II) and copper(II) with 5-amino-3,4-dimethylisoxazole (5-ADI) have been prepared and studied by means of magnetic susceptibility measurements, near and far i.r. spectra, electronic spectroscopy and, when possible, conductivity measurements. The 5-ADI generally behaves as bridging (Nring-, O- or Nring-, -NH2) ligand. All the complexes have an octahedral sterochemistry, except Co(5-ADI)2X2 (X = Cl, Br), Co2(5-ADI)7I4 which are tetrahedral and Cu(5-ADI)2 (ClO4)2 · 4 H2O which is square planar.  相似文献   
6.
Ti(III)-induced free-radical decomposition of a phenyldiazonium salt, followed by phenyl radical iodine-atom abstraction from alkyl iodides, leads to a one-pot selective alkyl radical addition to the C-atom of imines generated in situ under aqueous acidic conditions. [reaction: see text]  相似文献   
7.
Three new luminescent and redox-active Ru(II) complexes containing novel dendritic polypyridine ligands have been synthesized, and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox behavior have been investigated. The dendritic ligands are made of 1,10-phenanthroline coordinating subunits and of carbazole groups as branching sites. The first and second generation species of this novel class of dendritic ligands (L1 and L2, respectively; see Figure 1 for their structural formulas) have been prepared and employed. The metal dendrimers investigated are [Ru(bpy)(2)(L1)](2+) (1; bpy = 2,2'-bipyridine), [Ru(bpy)(2)(L2)](2+) (2), and [Ru(L1)(3)](2+) (3; see Figure 2). For the sake of completeness and comparison purposes, also the absorption spectra, redox behavior, and luminescence properties of L1 and L2 have been studied, together with the properties of 3,6-di(tert-butyl)carbazole (L0) and [Ru(bpy)(2)(phen)](2+) (4, phen = 1,10-phenanthroline). The absorption spectra of the free dendritic ligands show features which can be assigned to the various subunits (i.e., carbazole and phenanthroline groups) and additional bands at lower energies (at lambda > 300 nm) which are assigned to carbazole-to-phenanthroline charge-transfer (CT) transitions. These latter bands are significantly red-shifted upon acid and/or zinc acetate addition. Both L1 and L2 exhibit relatively intense luminescence at room temperature in fluid solution (lifetimes in the nanosecond time scale, quantum yields of the order of 10(-2)-10(-1)) and at 77 K in rigid matrix (lifetimes in the millisecond time scale). Such a luminescence is assigned to CT states at room temperature and to phenanthroline-centered pi-pi triplet levels at 77 K. The room-temperature luminescence of L1 and L2 is totally quenched by acid or zinc acetate. The metal dendrimers exhibit the typical absorption and luminescence properties of Ru(II) polypyridine complexes. In particular, metal-to-ligand charge-transfer (MLCT) bands dominate the visible absorption spectra, and formally triplet MLCT levels govern the excited-state properties. Excitation spectroscopy evidences that all the light absorbed by the dendritic branches is transferred with unitary efficiency to the luminescent MLCT states in 1-3, showing that the new metal dendrimers can be regarded as efficient light-harvesting antenna systems. All the free ligands and metal dendrimers exhibit a rich redox behavior (except L2 and 3, whose redox behavior was not investigated because of solubility reasons), with clearly attributable reversible carbazole- and metal-centered oxidation and polypyridine-centered reduction processes. The electronic interaction between the carbazole redox-active sites of the dendritic ligands is affected by Ru(II) coordination.  相似文献   
8.
Photodynamic therapy (PDT) is a way of treating malignant tumors and hyperproliferative diseases. It is based on the use of photosensitizer, herein the chlorophyll a (chl a), and a light of an appropriate wavelength. The interaction of the photosensitizer (PS) with the light produces reactive oxygen species (ROS), powerful oxidizing agents, which cause critical damage to the tissue. To solubilize chl a in aqueous solution and to obtain it as monomer, we have used cyclodextrins, carriers which are able to interact with the pigment and form the inclusion complex. The aim of this study is to examine which types of ROS are formed by Chl a/cyclodextrin complexes in phosphate buffered solution and cell culture medium, using specific molecules, called primary acceptors, which react selectively with the reactive species. In fact the changes of the absorption and the emission spectra of these molecules after the illumination of the PS provide information on the specific ROS formation. The 1O2 formation has been tested using chemical methods based on the use of Uric Acid (UA), 9,10‐diphenilanthracene (DPA) and Singlet oxygen sensor green (SOSG) and by direct detection of Singlet Oxygen (1O2) luminescence decay at 1270 nm. Moreover, 2,7‐dichlorofluorescin and ferricytochrome c (Cyt Fe3+) have been used to detect the formation of hydrogen peroxide and superoxide radical anion, which reduces Fe3+ of the ferricytochrome to Fe2+, respectively.  相似文献   
9.
10.
The behavior of the symmetrical ethane-bridged bis(Zn porphyrin) (1) has been investigated at the air-water interface. The molecular organization of floating films of pure 1 and its mixture with amphiphilic substances, such as arachidic acid and n-octadecylamine, was inspected by means of surface pressure-area isotherms, Brewster angle microscopy and reflection spectroscopy in the UV-Vis region. The overall results suggest the presence in all cases of mainly the anti conformer of 1 even when the dimer was spread on pure water, through the ligation of water molecules to the zinc atoms in the axial positions. It was also demonstrated for the first time that the syn-to-anti conformational transition of the porphyrin dimer can be accelerated by the ligation of suitable amphiphiles even at the liquid-air interface. In particular, it is noted that n-octadecylamine, and arachidic acid (to a lesser extent), added to the system as amphiphiles, drive the syn ? anti equilibrium of 1 towards the anti form through the axial ligation of the amino or carboxylate group to the zinc atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号