首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2019年   1篇
  2010年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C4mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid–liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C4mim][Br]) and tri-sodium citrate (Na3Cit) are taken. The apparent molar volume of transfer of [C4mim][Br] from water to aqueous solutions of Na3Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C4mim][Br] from water to aqueous solutions of Na3Cit have negative values. The effects of temperature and the addition of Na3Cit and [C4mim][Br] on the liquid–liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na3Cit triggers a salting-out effect, leading to significant upward shifts of the liquid–liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces for biphasic formation.  相似文献   
2.
Reaction of a non‐innocent o‐aminophenol benzoxazole based ligand HLBAP with VOCl3 afforded a vanadyl complex, VOLBIS (SQ), in which SQ is a 2,4‐di‐tert‐butylsemiquinone produced from hydrolysis of HLBAP. The crystal structure of VOLBIS (SQ) exhibits an octahedral geometry with the VO2+ center coordinated by two nitrogen and one oxygen atoms of LBAP and two oxygen atoms of SQ. Electrochemical studies showed quasi‐reversible metal‐centered reduction and ligand‐centered oxidation of complex. The magnetic moment of VOLBIS (SQ) is consistent with the spin‐only value expected for S = 1/2 system. The neutral species of VOLBIS (SQ) is EPR active, which is consistent with a paramagnetic electronic ground state (S = 1/2). This result is in accordance with the vanadyl (IV) moiety surrounded by tridentate iminobenzosemiquinonate anion radical (HLBIS)?‐ and benzosemiquinone ligand (SQ)?. The theoretical calculations confirm the experimental results. Furthermore, we present the optimal conditions for maximum efficiency of sulfide oxidation for oxidative desulfurization with hydrogen peroxide and 6 times reusability of catalyst for sulfoxidation of dibenzothiophene.  相似文献   
3.
Density, sound velocity and conductivity measurements are carried out on 1-heptyl-3-methylimidazolium bromide ([C7mim][Br]) in pure water and in aqueous solutions of sodium di-hydrogen citrate, di-sodium hydrogen citrate and tri-sodium citrate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent molar volume and isentropic compressibility as a function of temperature and concentration. The effects of temperature and charge on the anion of sodium citrate salts on the apparent molar volume and isentropic compressibility of [C7mim][Br] are studied. It was found that both of the apparent molar volume and isentropic compressibility of [C7mim][Br] in aqueous sodium citrate solutions are larger than those in pure water and increase by increasing temperature. The effects of temperature and charge on the anion of sodium citrate salts on the conductivity behavior of the investigated IL solutions are also studied.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号