首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
化学   39篇
数学   6篇
物理学   29篇
  2024年   2篇
  2023年   4篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2005年   1篇
  2000年   11篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   4篇
  1968年   1篇
  1931年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
2.
High-performance liquid chromatography separated successively and quantitatively the food flavoring agents pyrimidines, purines and nucleosides, followed by nucleotides, then by polyphenols and finally by pyrazines with a reversed-phase octadecylsilica (μBondapak C18) column and various proportions of methanol, water, acetic acid and tetrabutylammonium phosphate (PIC A). The polar solvent (solvent A) was water—acetic acid—PIC A (97.5:1.5:1.0) and the relatively non-polar solvent (solvent B) was methanol—acetic acid—PIC A (97.5:1.5:1.0). Purines, pyrimidines, and nucleosides were eluted with solvent A. Nucleotides were eluted with a mixture of solvents A and B (9:1). Polyphenols were separated with a gradient starting at 10% solvent B and finishing at 25% solvent B, and finally the pyrazines were removed successively from the column with a gradient starting at 25% solvent B and finishing at 45% solvent B. The resolution and reproducibility were excellent for more than 50 compounds. By this method beverages could be analyzed directly, without solvent extraction, for flavoring compounds.  相似文献   
3.
The reaction of sodium hydride or potassium t-butoxide with methyl epoxycitronellate (1) in dimethylformamide affords a mixture of cis,cis-puleganolide (2) and cis,trans-puleganolide (3) in high yield. When the cyclization is conducted at 110°, the isomeric 2-isopropenyl-5-methylcyclopentanecarboxylic acids (8a–d) become the major products. It is demonstrated that γ-lactones undergo alkoxide-induced elimination to afford γ,δ-unsaturated acids.  相似文献   
4.
The addition of the lithium anions derived from (R)- and (S)-methyl and -ethyl p-tolyl sulfoxides to (S)-N-benzylidene-p-toluenesulfinamide provides an easy access route to enantiomerically pure beta-(N-sulfinyl)amino sulfoxides. Stereoselectivity can be achieved when the configurations at the sulfur atoms of the two reagents are opposite (matched pair), thus resulting in only one diastereoisomer, even for the case in which two new chiral centers are created. The N-sulfinyl group primarily controls the configuration of the carbon bonded to the nitrogen, whereas the configuration of the alpha-sulfinyl carbanion seems to be responsible for the level of asymmetric induction, as well as for the configuration of the new stereogenic C-SO carbon in the reactions with ethyl p-tolyl sulfoxides. An efficient method for transforming the obtained beta-(N-sulfinyl)amino sulfoxides into optically pure beta-amino alcohols, based on the stereoselective non-oxidative Pummerer reaction, is also reported.  相似文献   
5.
6.
The behavior of (Z)-3-p-tolylsulfinylacrylonitrile (1) as a chiral dienophile has been evaluated from its reactions with furan and acyclic dienes. Electrostatic interactions of the cyano group with the sulfinyl one restrict the conformational mobility around the C-S bond, thus controlling the pi-facial selectivity, which is almost complete in all cases, the approach of the diene from the less-hindered face of the dienophile (that bearing the lone electron pair) in the predominant rotamer being the favored one. The regioselectivity is also completely controlled by the cyano group. Additionally, the reactivity of compound 1 as well as its endo-selectivity are both higher than those observed for the corresponding (Z)-3-sulfinylacrylates, thus proving the potential of sulfinylnitriles as chiral dienophiles.  相似文献   
7.
Abstract— In the jellyfish Aequorea, the green-fluorescent protein (GFP) functions as the in vivo bio-luminescence emitter via energy transfer from the photoprotein aequorin. Accumulated evidence has indicated that the Aequorea GFP is a relatively inflexible protein. Present evidence, however, indicates that the chromophore environment is readily accessible to a variety of external perturbants. Native Aequorea GFP has an absorbance maximum at 395 nm and a shoulder at 470 nm. In low ionic strength buffer at neutral pH and room temperature the 395/470 nm absorbance ratio is about 2.0. We show that this ratio is highly variable depending upon temperature, ionic strength, protein concentration, and pH. A maximum ratio of 6.5 (at a protein concentration of 18.6 mg/m/) and minimum of 0.42 (at a pH of 12.2) have been measured. In the latter case, the resulting absorption and excitation spectra resemble those of Renilla GFP in spectral shape (but not wavelength maximum). In all cases as the perturbant is varied the resulting spectra pass through a sharp isosbestic point, suggesting a relatively simple two-state mechanism. These spectral perturbations are fully reversible. On the basis of these results, we suggest that the chromophore binding site is conformationally flexible. pH-Dependent changes in the near-UV and visible circular dichroism spectra plus spectrophotometric titration of tyrosine residues lend additional support to this hypothesis.  相似文献   
8.
Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum (Al) with copper oxide (CuO) was the only mixture to ignite by electrostatic discharge. Under the loose powder conditions of these experiments, the Al–CuO minimum ignition energy (MIE) is 25 mJ and exhibited an electrical conductivity two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.  相似文献   
9.
Multiple gas phase ion/ion covalent modifications of peptide and protein ions are demonstrated using cluster-type reagent anions of N-hydroxysulfosuccinimide acetate (sulfo-NHS acetate) and 2-formyl-benzenesulfonic acid (FBMSA). These reagents are used to selectively modify unprotonated primary amine functionalities of peptides and proteins. Multiple reactive reagent molecules can be present in a single cluster ion, which allows for multiple covalent modifications to be achieved in a single ion/ion encounter and at the ‘cost’ of only a single analyte charge. Multiple derivatizations are demonstrated when the number of available reactive sites on the analyte cation exceeds the number of reagent molecules in the anionic cluster (e.g., data shown here for reactions between the polypeptide [K10 + 3H]3+ and the reagent cluster [5R5Na – Na]). This type of gas-phase ion chemistry is also applicable to whole protein ions. Here, ubiquitin was successfully modified using an FBMSA cluster anion which, upon collisional activation, produced fragment ions with various numbers of modifications. Data for the pentamer cluster are included as illustrative of the results obtained for the clusters comprised of two to six reagent molecules.
Figure
?  相似文献   
10.
The space group of alpha(')-NaV2O5 turns below T(c) = 34 K from Pmmn with all V sites equivalent, into Fmm2 with three independent vanadium sites per layer. This is incompatible with models of charge ordering into V4+ and V5+. Our structure determination indicates that the phase transition consists of a charge ordering with three distinct valence states, formally V4+, V4.5+, and V5+. The singlet formation is not associated with dimerization on the spin ladder, but with the formation of spin clusters. Finally, we ascribe the quadrupling of the c axis to the large polarizability of the V2O5 skeleton.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号