首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   10篇
化学   185篇
力学   2篇
数学   81篇
物理学   29篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   18篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   7篇
  2008年   18篇
  2007年   22篇
  2006年   21篇
  2005年   13篇
  2004年   16篇
  2003年   19篇
  2002年   20篇
  2001年   12篇
  2000年   9篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   7篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有297条查询结果,搜索用时 31 毫秒
1.
2.
The paper proves the existence of solutions to the magneto-hydrodynamics equations driven by random exterior forcing terms both in the velocity and in the magnetic field. The existence and uniqueness of an invariant measure is also obtained via coupling methods.  相似文献   
3.
4.
Control over the interchromophore separation, their angular relationship, and the spatial overlap of their electronic clouds in several ZnP-C(60) dyads (ZnP=zinc porphyrin) is used to modulate the rates of intramolecular electron transfer. For the first time, a detailed analysis of the charge transfer absorption and emission spectra, time-dependent spectroscopic measurements, and molecular dynamics simulations prove quantitatively that the same two moieties can produce widely different electron-transfer regimes. This investigation also shows that the combination of ZnP and C(60) consistently produces charge recombination in the inverted Marcus region, with reorganization energies that are remarkably low, regardless of the solvent polarity. The time constants of electron transfer range from the mus to the ps regime, the electronic couplings from a few tens to several hundreds of cm(-1), and the reorganization energies remain below 0.54 eV and can be as low as 0.16 eV.  相似文献   
5.
Organic functionalization of carbon nanotubes   总被引:11,自引:0,他引:11  
A very general and versatile method for functionalizing different types of carbon nanotubes is described, using the 1,3-dipolar cycloaddition of azomethine ylides. Approximately one organic group per 100 carbon atoms of the nanotube is introduced, to yield remakably soluble bundles of nanotubes, as seen in transmission electron micrographs. The solubilization of the nanotubes generates a novel, interesting class of materials, which combines the properties of the nanotubes and the organic moiety, thus offering new opportunities for applications in materials science, including the preparation of nanocomposites.  相似文献   
6.
Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles   总被引:1,自引:0,他引:1  
Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.  相似文献   
7.
The organic functionalisation of carbon nanotubes can improve substantially their solubility and biocompatibility profile; as a consequence, their manipulation and integration into biological systems has become possible so that functionalised carbon nanotubes hold currently strong promise as novel systems for the delivery of drugs, antigens and genes.  相似文献   
8.
Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f-CNT:DNA complexes to suggest that large surface area leading to very efficient DNA condensation is not necessary for effective gene transfer. However, it will require further investigation to determine whether the degree of binding and tight association between DNA and nanotubes is a desirable trait to increase gene expression efficiency in vitro or in vivo. This study constitutes the first thorough investigation into the physicochemical interactions between cationic functionalized carbon nanotubes and DNA toward construction of carbon nanotube-based gene transfer vector systems.  相似文献   
9.
Induction of self-organization between zinc phthalocyanine (ZnPc) and C60 moieties in a novel amphiphilic ZnPc-C60 salt results in uniformly nanostructured 1-D nanotubules. Their photoreactivity, in terms of ultrafast charge separation (i.e., approximately 1012 s-1) and ultraslow charge recombination (i.e., approximately 103 s-1), is remarkable. In addition, the observed ZnPc*+-C60*- lifetime of 1.4 ms implies, relative to that of the monomeric ZnPc-C60 ( approximately 3 ns), an impressive stabilization of 6 orders of magnitude.  相似文献   
10.
A previous result is generalized. An existence and uniqueness theorem is proved for the Hartree-Fock time-dependent problem in the case of a finite Fermi system interacting via a two body potential, which is supposed dominated by the kinetic energy part of the one-particle hamiltonian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号