首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   4篇
化学   121篇
力学   1篇
数学   1篇
物理学   22篇
  2021年   4篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   18篇
  2010年   1篇
  2009年   3篇
  2008年   13篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   7篇
  2003年   12篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有145条查询结果,搜索用时 156 毫秒
1.
2.
3.
Summary Reactions oftrans-[M(N2)2(dppe)2] (A;M=Mo, W;dppe=Ph 2PCH2CH2PPh 2) with ethyldiazoacetate, N2CHCOOEt, yield the bisdiazoalkane speciestrans-[M(N2CHCOOEt)2(dppe)2], upon simple replacement of the dinitrogen ligand by ethyldiazoacetate. However, diazomethane, N2CH2, reacts withA with loss of N2 to give products which we tentatively formulate as containing methylene ligands,trans-[M(CH2)2(dppe)2].
Herstellung von Bisdiazoalkan- und ähnlichen Komplexen aus den Reaktionen von Diazoverbindungen mit Distickstoffkomplexen des Typstrans-[M(N2)2(Ph 2PCH2CH2PPh 2)2] mitM=Mo oder W
Zusammenfassung Die Reaktion vontrans-[M(N2)2(dppe)2] (A:dppe=Ph 2PCH2CH2PPh 2 undM=Mo oder W) mit Ethyldiazoacetat, N2CHCOOEt, ergab nach einfachem Austausch des Distickstoffliganden mit Ethyldiazoacetat die Bisdiazoalkanetrans-[M(N2CHCOOEt)2(dppe)2]. Diazomethan (N2CH2) hingegen reagierte mitA unter Verlust von N2 zu Produkten, die tentativ alstrans-[M(CH2)2(dppe)2] mit Methylenliganden formuliert wurden.
  相似文献   
4.
The isocyanide complexes trans-[ReCl(CNR)(dppe)2] (R  Me, But, C6H4CH3-4, C6H4CH3-2, C6H4Cl-4, C6H4OCH3-4 and C6H3Cl2-2,6; dppe  Ph2PCH2CH2PPh2) have been prepared by isocyanide displacement of dinitrogen from the parent complex trans-[ReCl(N2)(ddpe)2]. Their redox properties have been studied by cyclic voltammetry and are interpreted on the basis of the electronic properties and the geometry of the ligating isocyanides which are believed to be bent in these complexes, appearing to exhibit ligand parameter (PL) values ca. +0.3 V higher than those which would be expected for linear geometry. A very high polarisability (B ? 3.4) is observed for the {ReCl(dppe)2} site.  相似文献   
5.
A series of diorganotin(IV) and dichlorotin(IV) derivatives of 4-X-benzohydroxamic acids, [HL(1) (X = Cl) or HL(2) (X = OCH(3))] formulated as [R(2)SnL(2)] (R = Me, Et, nBu, Ph or Cl; L = L(1) or L(2)), along with their corresponding mixed-ligand complexes [R(2)Sn(L(1))(L(2))] have been prepared and characterized by FT-IR, (1)H, (13)C, and (119)Sn NMR spectroscopy, mass spectrometry, elemental analysis, and melting points. In addition, single-crystal X-ray diffraction analyses were carried out for [Me(2)SnL(2)] (L = L(1) or L(2)), which show coordination structures intermediate between distorted octahedra and bicapped tetrahedra. The hydroxamate ligands are asymmetrically coordinated by the oxygen atoms, the carbonyl oxygen atom is further away from the metal center than the other oxygen atom. The complexes are stable monomeric species; most of them are soluble not only in chlorohydrocarbon solvents, but also in alcohols and hydroalcoholic solutions. In polar solvents, the mixed-ligand complexes gradually decompose into the corresponding single-ligand complex couples. The complexes exhibit in vitro antitumor activities (against a series of human tumor cell lines) which, in some cases, are identical to, or even higher than, that of cisplatin. For the dialkyltin complexes, the activity increases with the length of the carbon chain of the alkyl ligand and is higher in the case of the chloro-substituted benzohydroxamato ligand. The [nBu(2)Sn(L(1))(2)] complex displays a high in vivo activity against H22 liver and BGC-823 gastric tumors, and has a relatively low toxicity.  相似文献   
6.
7.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with a 1-alkyne HCCR (R =tBu, CO2Me, CO2Et, or C6H4Me-4), in the presence of Tl[BF4]/[NH4][BF4], under sunlight, affords the corresponding carbyne-fluoro complexes trans-[ReF(CCH2R)(dppe)2][BF4] in an unprecedented single-pot synthesis. Further reaction with [BU4N]OH leads to the vinylidenefluoro compounds trans-[ReF(=C=CHR)(dppe)2] (R = CO2Me, CO2Et, or C6H4Me-4).  相似文献   
8.
The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.  相似文献   
9.
Addition of excess R(2)NCN to an aqueous solution of K(2)[PtCl(4)] led to the precipitation of [PtCl(2)(NCNR(2))(2)] (R(2) = Me(2) 1; Et(2) 2; C(5)H(10) 3; C(4)H(8)O, 4) in a cis/trans isomeric ratio which depends on temperature. Pure isomers cis-1-3 and trans-1-3 were separated by column chromatography on SiO(2), while trans-4 was obtained by recrystallization. Complexes cis-1-3 isomerize to trans-1-3 on heating in the solid phase at 110 degrees C; trans-1 has been characterized by X-ray crystallography. Chlorination of the platinum(II) complexes cis-1-3 and trans-1-4 gives the appropriate platinum(IV) complexes [PtCl(4)(NCNR(2))(2)] (cis-5-7 and trans-5-8). The compound cis-6 was also obtained by treatment of [PtCl(4)(NCMe)(2)] with neat Et(2)NCN. The platinum(IV) complex trans-[PtCl(4)(NCNMe(2))(2)] (trans-5) in a mixture of undried Et(2)O and CH(2)Cl(2) undergoes facile hydrolysis to give trans-[PtCl(4)[(H)=C(NMe(2))OH](2)] (9; X-ray structure has been determined). The hydrolysis went to another direction with the cis-[PtCl(4)(NCNR(2))(2)] (cis-5-7) which were converted to the metallacycles [PtCl(4)[NH=C(NR(2))OC(NR(2))=NH]] (11-13) due to the unprecedented hydrolytic coupling of the two adjacent dialkylcyanamide ligands giving a novel (for both coordination and organic chemistry) diimino linkage. Compounds 11-13 and also 14 (R(2) = C(4)H(8)O) were alternatively obtained by the reaction between cis-[PtCl(4)(MeCN)(2)] and neat undried NCNR(2). The structures of complexes 11, 13, and 14 were determined by X-ray single-crystal diffraction. All the platinum compounds were additionally characterized by elemental analyses, FAB mass-spectrometry, and IR and (1)H and (13)C[(1)H] NMR spectroscopies.  相似文献   
10.
Treatment of trans-[PtCl4(RCN)2] (R = Me, Et, Ph, NEt2) with 2 equiv of the amidine PhC(=NH)NHPh in a suspension of MeCN (R = Me), CHCl3 (R = Et, Ph), or in CHCl3 solution (R = NEt2) results in the formation of the imidoylamidine complexes trans-[PtCl4{NH=C(R)N=C(Ph)NHPh}2] (1-4) isolated in good yields (66-84%). The reaction of soluble complexes 3 and 4 with 2 equiv of Ph3P=CHCO2Me in CH2Cl2 (40 degrees C, 5 h) leads to dehydrochlorination resulting in a chelate ring closure to furnish the platinum(IV) chelates [PtCl2{NH=C(R)NC(Ph)=NPh}2] (R = Ph, 5; R = NEt2, 6), accordingly, and the phosphonium salt [Ph3PCH2CO2Me]Cl. Treatment of 5 with 3 equiv of Ph3P=CHCO2Me at 50 degrees C for 5 d resulted in only a 30% conversion to the corresponding Pt(II) complex [Pt{NH=C(NEt2)NC(Ph)=NPh}2] (15). The reduction can be achieved within several minutes, when Ph2PCH2CH2PPh2 in CDCl3 is used. When the platinum(II) complex trans-[PtCl2(RCN)2] is reacted with 2 equiv of the amidine, the imidoylamidinato complexes [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) and [PhC(=NH)NHPh] x HCl (7) are formed. The reaction of trans-[PtCl2(RCN)2] with 4 equiv of the amidine under a prolonged reaction time or treatment of [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) with 2 more equiv of the amidine yields the complex bearing two chelate rings [Pt{NH=C(R)NC(Ph)=NHPh}2] (12-15). The treatment of cis-[PtCl2(RCN)2] (R = Me, Et) with the amidine gives ca. 50-60% yield of [PtCl2{NH=C(R)NHC(Ph)=NHPh}] (16 and 17). All of the platinum compounds were characterized by elemental analyses; FAB mass spectrometry; IR spectroscopy; 1H, 13C{1H}, and 195Pt NMR spectroscopies, and four of them (4, 6, 8, and 15) were also characterized by X-ray crystallography. The coupling of the Pt-bound nitriles and the amidine is metal-mediated insofar as RCN and PhC(=NH)NHPh do not react in the absence of the metal centers in conditions more drastic than those of the observed reactions. The nitrile-amidine coupling reported in this work constitutes a route to the synthesis of imidoylamidine complexes, some of them exhibiting luminescent properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号