首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   15篇
化学   38篇
力学   1篇
数学   1篇
物理学   7篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  1997年   1篇
  1995年   2篇
  1992年   3篇
排序方式: 共有47条查询结果,搜索用时 500 毫秒
1.
Compounds of trigonal cluster chloroaqua complexes with cucurbit[8]uril were synthesized by slowly evaporating HCl solutions of chalcogenides heterometallic cubane cluster complexes of molybdenum and tungsten with cucurbit[8]uril in air; the complexes were characterized by X-ray diffraction analysis: (H3O)8[Mo3S4(H2O)2.5Cl6.5]2Cl(PdCl4)·(C48H48N32O16)· 29H2O (a = 13.3183(17) Å, b = 13.7104(18) Å, c = 18.225(3) Å; α = 80.263(3)°, β = 77. 958(3)°, γ = 87.149(4)°, V = 3207.4(7) Å3, space group P , Z = 1, ρ(calc) = 1.900 g/cm3), (H3O)4 [Mo3S4(H2O)3Cl6]2·(C48H48N32O16)3·68H2O (a = 21.413(6) Å, c = 49.832(10) Å; γ = 120°, V = 19788(8) Å3, space group R , Z = 3, ρ(calc) = 1.695 g/cm3), (H3O)6 [Mo3S4(H2O)3Cl6]2Cl2·(C48H48N32O16)·12H2O (a = 15.881(2) Å, b = 17.191(2) Å, c = 23.276(4) Å; β = 98.865(15)°, V = 6278.7(15) Å3, space group P21/c, Z = 2, ρ(calc) = 1.638 g/cm3), [W3S4(H2O)5Cl4]2·(C48H48N32O16)3·35H2O (a = 21.038(3) Å; α = 61.20(1)°, V = 6762.0(14) Å3, space group R , Z = 1, ρ(calc) = 1.582 g/cm3). The [Mo3S4(H2O)3Cl6]2− anion complex was isolated as three geometrical isomers.Original Russian Text Copyright © 2004 by E. V. Chubarova, D. G. Samsonenko, H. G. Platas, F. M. Dolgushin, A. V. Gerasimenko, M. N. Sokolov, Z. A. Starikova, M. Yu. Antipin, and V. P. Fedin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1049–1058, November–December, 2004.  相似文献   
2.
A new inclusion compound which is a supramolecular adduct of cucurbit[8]uril with two guest molecules of phenylphosphonic acid, PhP(O)(OH)2, included into the cavity as ``two guests in host'' is reported. The guests match both size and hydrophilicity/hydrophobicity requirements. Two phenyl groups of molecules of PhP(O)(OH)2 are directed toward the center of the large hydrophobic cavity whereas the PO(OH)2 groups are outward-looking and bound with each hydrophilic portal of cucurbit[8]uril by a short hydrogen bond.  相似文献   
3.
4.
New pyranoid ε‐sugar amino acids were designed as building blocks, in which the carboxylic acid and the amine groups were placed in positions C2 and C3 with respect to the tetrahydropyran oxygen atom. By using standard solution‐phase coupling procedures, cyclic homooligomers containing pyranoid ε‐sugar amino acids were synthesized. Conformation analysis was performed by using NMR spectroscopic experiments, FTIR spectroscopic studies, X‐ray analysis, and a theoretical conformation search. These studies reveal that the presence of a methoxy group in the position C4 of the pyran ring produces an important structural change in the cyclodipeptides. When the methoxy groups are present, the structure collapses through interresidue hydrogen bonds between the oxygen atoms of the pyran ring and the amide protons. However, when the cyclodipeptide lacks the methoxy groups, a U‐shape structure is adopted, in which there is a hydrophilic concave face with four oxygen atoms and two amide protons directed toward the center of the cavity. Additionally, we found important evidence of the key role played by weak electrostatic interactions, such as the five‐membered hydrogen‐bonded pseudocycles (C5) between the amide protons and the ether oxygen atoms, in the conformation equilibrium of the macrocycles and in the cyclization step of the cyclic tetrapeptides.  相似文献   
5.
We report the synthesis of a cyclen‐based ligand (4,10‐bis[(1‐oxidopyridin‐2‐yl)methyl]‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid= L1 ) containing two acetate and two 2‐methylpyridine N‐oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the GdIII complex may be sufficient for biological applications. A detailed structural study of the complexes by 1H NMR spectroscopy and DFT calculations indicates that they adopt an anti‐Δ(λλλλ) conformation in aqueous solution, that is, an anti‐square antiprismatic (anti‐SAP) isomeric form, as demonstrated by analysis of the 1H NMR paramagnetic shifts induced by YbIII. The water‐exchange rate of the GdIII complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$ =6.7×106 s?1, about a quarter of that for the mono‐oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The 2‐methylpyridine N‐oxide chromophores can be used to sensitize a wide range of LnIII ions emitting in both the visible (EuIII and TbIII) and NIR (PrIII, NdIII, HoIII, YbIII) spectral regions. The emission quantum yield determined for the YbIII complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$ =7.3(1)×10?3) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.  相似文献   
6.
The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA4? (H4TETA=2,2′,2′′,2′′′‐(1,4,8,11‐tetraazacyclotetradecane‐1,4,8,11‐tetrayl)tetraacetic acid), BCAED4? (H4BCAED=2,2′,2′′,2′′′‐{[(1,4‐diazepane‐1,4‐diyl)bis(ethane‐2,1‐diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C62? (H2BP18C6=6,6′‐[(1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecane‐7,16‐diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6‐31G(d,p) level, and using a 46+4fn ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X‐ray structures. The contractions of the Ln3+ coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La( L )]n+/?(sol)+Ln3+(sol)→[Ln( L )]n+/?(sol)+La3+(sol). A parameterization of the Ln3+ radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED4? complexes, increase smoothly for the TETA4? analogues, and decrease in the case of BP18C62? complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.  相似文献   
7.
Lanthanide complexes (Ln=Eu, Tb, and Yb) that are based on a C2‐symmetric cyclen scaffold were prepared and characterized. The addition of fluoride anions to aqueous solutions of the complexes resulted in the formation of dinuclear supramolecular compounds in which the anion is confined into the cavity that is formed by the two complexes. The supramolecular assembly process was monitored by UV/Vis absorption, luminescence, and NMR spectroscopy and high‐resolution mass spectrometry. The X‐ray crystal structure of the europium dimer revealed that the architecture of the scaffold is stabilized by synergistic effects of the Eu? F? Eu bridging motive, π stacking interactions, and a four‐component hydrogen‐bonding network, which control the assembly of the two [EuL] entities around the fluoride ion. The strong association in water allowed for the luminescence sensing of fluoride down to a detection limit of 24 nM .  相似文献   
8.
A series of Gd3+ complexes exhibiting a relaxometric response to zwitterionic amino acid neurotransmitters was synthesized. The design concept involves ditopic interactions 1) between a positively charged and coordinatively unsaturated Gd3+ chelate and the carboxylate group of the neurotransmitters and 2) between an azacrown ether appended to the chelate and the amino group of the neurotransmitters. The chelates differ in the nature and length of the linker connecting the cyclen‐type macrocycle that binds the Ln3+ ion and the crown ether. The complexes are monohydrated, but they exhibit high proton relaxivities (up to 7.7 mM ?1 s?1 at 60 MHz, 310 K) due to slow molecular tumbling. The formation of ternary complexes with neurotransmitters was monitored by 1H relaxometric titrations of the Gd3+ complexes and by luminescence measurements on the Eu3+ and Tb3+ analogues at pH 7.4. The remarkable relaxivity decrease (≈80 %) observed on neurotransmitter binding is related to the decrease in the hydration number, as evidenced by luminescence lifetime measurements on the Eu3+ complexes. These complexes show affinity for amino acid neurotransmitters in the millimolar range, which can be suited to imaging concentrations of synaptically released neurotransmitters. They display good selectivity over non‐amino acid neurotransmitters (acetylcholine, serotonin, and noradrenaline) and hydrogenphosphate, but selectivity over hydrogencarbonate was not achieved.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号