首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   20篇
物理学   2篇
  2021年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有22条查询结果,搜索用时 375 毫秒
1.
This work highlights four different topics in modeling of DNA: (i) the importance of water and ions together with the structure and function of DNA; the hydration structure around the ions appears to be the determining factor in the ion coordination to DNA, as demonstrated in the results of our MD simulations; (ii) how MD simulations can be used to simulate single molecule manipulation experiments as a complement to reveal the structural dynamics of the studied biomolecules; (iii) how damaged DNA can be studied in computer simulations; and (iv) how repair of damaged DNA can be studied theoretically. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
2.
Although weak interactions play subtle but important roles in dictating protein structures, their experimental detection is nontrivial. From NOE experiments we provide direct evidence for the presence of CH···π interaction, operational between the C(α)-H of the first Pro and the aromatic (Aro) side chain of Xaa, in a peptide series with the general sequence Ac-Pro-Pro-Xaa-NH(2). Indirect evidence of CH···π interaction is provided from ring current-induced upfield displacement of Pro(1) C(α)-H chemical shifts and restriction of side-chain (χ1) rotation of Xaa. A consequence of this interaction is the enhanced stability of the Pro-cisPro conformer in Ac-Pro-Pro-Xaa-NH(2) when Xaa is aromatic. The free energies associated with trans to cis transformation of the Pro-Pro moiety are 0.35, 0.59, 0.64, and 0.82 kcal/mol when Xaa is Tyr, Trp, Phe, and His (pH of 8.4), respectively. In comparison, the corresponding free energy is ~1.55 kcal/mol when Xaa is nonaromatic. The observed population of Pro-cisPro-His and the pH-induced perturbation of electron density of the His side chain were correlated, providing further evidence for a direct role of CH···π interaction in modulating the stability of Pro-cisPro population in Ac-Pro-Pro-Aro-NH(2). Our study establishes Pro-Pro-Aro to be a new sequence motif that can stabilize Pro-cisPro peptide bonds. This study not only identifies a new structurally biased sequence motif but also directly demonstrates the role played by CH···π interactions in subtly altering conformational preferences of three-residue peptide sequences with implications on the role played by cis-peptide bonds in unfolded proteins.  相似文献   
3.
In biological fluids, nanoparticles are always surrounded by proteins. As the protein is adsorbed on the surface, the extent of adsorption and the effect on the protein conformation and stability are dependent on the chemical nature, shape, and size of the nanoparticle (NP). We have carried out a detailed investigation on the interaction of bovine serum albumin (BSA) with polyethyleneimine-functionalized ZnO nanoparticles (ZnO-PEI). ZnO-PEI was synthesized using a wet chemical method with a core size of ~3-7 nm (from transmission electron microscopy). The interaction of BSA with ZnO-PEI was examined using a combination of calorimetric, spectroscopic, and computational techniques. The binding was studied by ITC (isothermal titration calorimetry), and the result revealed that the complexation is enthalpy-driven, indicating the possible involvement of electrostatic interaction. To investigate the nature of the interaction and the location of the binding site, a detailed domain-wise surface electrostatic potential calculation was performed using adaptive Poisson-Boltzmann software (APBS). The result shows that the protein surface can bind the nanoparticle. On binding ZnO-PEI, the protein gets destabilized to some extent, as displayed by CD (circular dichroism) and FTIR (Fourier transform infrared) spectroscopy. Chemical and thermal denaturation of BSA, when carried out in the presence of ZnO-PEI, also indicated a small perturbation in the protein structure. A comparison of the enthalpy and entropy components of binding with those derived for the interaction of BSA with ZnO nanoparticles explains the effect of hydrophilic cationic species attached on the NP surface. The effect of the NP surface modification on the structure and stability of BSA would find useful applications in nanobiotechnology.  相似文献   
4.
Clustered DNA damage sites induced by ionizing radiation have been suggested to have serious consequences to organisms, such as cancer, due to their reduced probability to be repaired by the enzymatic repair machinery of the cell. Although experimental results have revealed that clustered DNA damage sites effectively retard the efficient function of repair enzymes, it remains unclear as to what particular factors influence this retardation. In this study, approaches based on molecular dynamics (MD) simulation have been applied to examine conformational changes and energetic properties of DNA molecules containing clustered damage sites consisting of two lesioned sites, namely 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic (AP) site, located within a few base pairs of each other. After 1 ns of MD simulation, one of the six DNA molecules containing a clustered damage site develops specific characteristic features: sharp bending at the lesioned site and weakening or complete loss of electrostatic interaction energy between 8-oxoG and bases located on the complementary strand. From these results it is suggested that these changes would make it difficult for the repair enzyme to bind to the lesions within the clustered damage site and thereby result in a reduction of its repair capacity.  相似文献   
5.
6.
Classical molecular dynamics methods were used to analyze the importance of 8-oxoguanine (8-oxoG) pairing with other DNA bases in order to determine the impact of oxidative guanine lesions on DNA structure. Six lesioned molecules, each containing 8-oxoG mispaired with one of the four normal bases on the the opposite strand at the center of 40-mer DNA, and one non-damaged DNA molecule, were simulated for 2 nanoseconds of real time. The 8-oxoG lesioned bases were found to incorporate opposite all normal bases. There are observed conformational and energetical differences among these parings. 8-oxoG in anti-form creates firm hydrogen bonds with cytosine and this bonding has a strong attractive electrostatic interaction energy similar to that of a native base pair-guanine to cytosine. Meanwhile, it does not form a stable base pair with purine bases (adenine and guanine) nor with the pyrimidine base thymine. On the other hand, the 8-oxoG in syn-form was found to pair with adenine.   相似文献   
7.
JPC – Journal of Planar Chromatography – Modern TLC - A dual detection mode high-performance thin-layer chromatographic (HPTLC) method has been evolved for the contemporaneous...  相似文献   
8.
9.
An efficient formal synthesis of S-(+) dapoxetine starting from 3-hydroxy azetidin-2-one is described. The intermediate (S)-3-(dimethyl amino)-3-phenylpropan-1-ol was synthesized in enantiopure form starting with 3-hydroxy azetidin-2-one in seven steps.  相似文献   
10.
One nanosecond molecular dynamics (MD) simulation of a thymine glycol (TG)-lesioned part of human lymphoblast AG9387 was performed to determine structural changes in DNA molecule caused by the presence of a lesion. These changes can be significant for proper recognition of lesions by a repair enzyme. Thymine glycol is the DNA oxidative lesion formed by addition of OH radicals to C5 and C6 atoms of the thymine base. This lesion is known as causing Cockayne Syndrome-inherited genetic disorder. Distribution of water molecules in a hydration shell around the DNA molecule was analyzed for its contribution to the recognition of the TG lesion by the repair enzyme. The results of MD simulation show there is a specific DNA structural configuration formed at the lesion. After 500 ps the DNA is bent in a kink at the TG site. This change dislocates the glycosyl bond at C5' to a position closer to the DNA surface, and thus its atoms are more exposed to the surrounding water shell. The increased number of water molecules that are close to the TG site indicates that the glycosyl bond may be easily contacted by the repair enzyme. In addition, the higher number of water molecules at the TG site substantiates the importance of water-mediated hydrogen bonds created between the repair enzyme and the DNA upon formation of the complex. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1723-1731, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号