首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
化学   52篇
数学   6篇
物理学   9篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有67条查询结果,搜索用时 46 毫秒
1.
Regioselective catalytic transformations using supramolecular directing groups are increasingly popular as it allows for control over challenging reactions that may otherwise be impossible. In most examples the reactive group and the directing group are close to each other and/or the linker between the directing group is very rigid. Achieving control over the regioselectivity using a remote directing group with a flexible linker is significantly more challenging due to the large conformational freedom of such substrates. Herein, we report the redesign of a supramolecular Rh–bisphosphite hydroformylation catalyst containing a neutral carboxylate receptor (DIM pocket) with a larger distance between the phosphite metal binding moieties and the DIM pocket. For the first time regioselective conversion of internal and terminal alkenes containing a remote carboxylate directing group is demonstrated. For carboxylate substrates that possess an internal double bond at the Δ-9 position regioselectivity is observed. As such, the catalyst was used to hydroformylate natural monounsaturated fatty acids (MUFAs) in a regioselective fashion, forming of an excess of the 10-formyl product (10-formyl/9-formyl product ratio of 2.51), which is the first report of a regioselective hydroformylation reaction of such substrates.  相似文献   
2.
For a given set of stimulus frequencies (f1 ,f2), the level of distortion product otoacoustic emissions (DPOAEs) varies with the levels of the stimulus tones. By variation of the stimulus levels, L1,L2-maps for DPOAEs can be constructed. Here, we report on L1 ,L2-maps for DPOAEs from the frog ear. In general, these maps were similar to those obtained from the mammalian cochlea. We found a conspicuous difference between the equal-level contour lines for low-level and high-level DPOAEs, which could be modeled by a saturating and an expansive nonlinearity, respectively. The transition from the high-level to the low-level response was accompanied by a DPOAE phase-change, which increased from 0 to pi rad with increasing frequency. These results suggest that in the frog low-level and high-level DPOAEs are generated by separate nonlinear mechanisms. Also, there was a conspicuous difference in the growth of the low-level emissions from the two anuran auditory papillae. In the basilar papilla, this growth was expansive for the lowest stimulus levels and saturated for intermediate levels. This is consistent with the behavior of a Boltzman nonlinearity. In the amphibian papilla this growth was compressive, suggesting the additional effect of a compressive amplification mechanism on the generation of DPOAEs.  相似文献   
3.
A comparison was made between electron capture negative ionization quadrupole mass spectrometry (ECNI-MS) and electron capture detection (ECD) with regard to repeatability and reproducibility for the gas chromatographic (GC) analysis of toxaphene congeners [chlorobornanes (CHBs)]. The tests, including standard solutions and several cleaned fish extracts, showed larger relative standard deviations (RSDs) for the repeatability of ECNI-MS but no differences in the reproducibility of the 2 techniques. The sensitivity of the GC-ECNI-MS was considerably better than that of GC/ECD. Four stepwise-designed comparative tests were also conducted on GC analysis, cleanup, and the complete method. The results showed that, according to the current state-of-the-art, coefficients of variation for the between-laboratory performance were not < 20% and were usually between 20 and 30%. In spite of separation problems, e.g., for CHB 26, which cannot be separated into a single-component peak, a 95% methyl 5% phenyl polysiloxane (CP Sil 8) column was preferred to more polar columns for the analysis of CHBs 26, 40, 41, 44, 50, and 62. CHB 62 was more difficult to determine than CHB 26 and 50. Addition of the CHBs 40, 41, and 44 to the standard set of 3 chlorobornanes (26, 50, and 62) resulted in more separation problems. A 3-step cleanup method was recommended.  相似文献   
4.
In the past, the preferred strategy for the identification of unknown compounds was to search in an appropriate mass spectral database for spectra obtained using either electron ionisation (GC‐MS analyses) or collision‐induced dissociation (LC‐MS/MS analyses). Recently, an increase has been seen in the use of accurate mass instruments and spectra‐less databases, based on monoisotopic accurate mass alone. In this article, we describe a systematic workflow for the screening and identification of new flame retardants. This approach utilises LC‐quadrupole‐time‐of‐flight MS and spectra‐less databases based only on monoisotopic accurate mass for the identification of ‘unknowns’. An in‐house database was built, and the input parameters used in the data analysis process were optimised for flame retardant chemicals, so that it can be easily transferred to other laboratories. The procedure was successfully applied to dust, foam and textiles from car interiors and indoor consumer products. The developed method was demonstrated for the main new flame retardant present in Antiblaze V6 and for the three unreported reaction by‐products/impurities present in the same technical mixture. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
A gas chromatography electron capture negative ionization mass spectrometry (GC(ECNI)MS) procedure for the determination of priority polybrominated diphenyl ethers (PBDEs; congeners 28, 47, 99, 100, 153 and 154) in water samples at regulatory EU levels has been developed. The method is based on the use of 81Br-labelled PBDEs for isotope dilution analysis and the measurement of 79Br/81Br isotope ratios in gas chromatography peaks with the electron capture negative ionization technique. The suitability of this ion source for the precise and accurate measurement of bromine isotope ratios has been demonstrated. The general ECNI-IDMS procedure was evaluated by the analysis of NIST SRM 1947 (Lake Michigan fish tissue) with satisfactory results. For the analysis of water samples, 500 mL of the samples were spiked with the labelled PBDEs and extracted with 10 mL isooctane for 30 min. The extract was evaporated down to ca. 100 μL and injected in the GC(ECNI)MS. Detection limits ranged from 0.014 −1 to 0.089 pg mL−1 depending on the congener. Recoveries from real water samples, spiked at a level of 0.5 pg mL−1, ranged from 77% to 102%.  相似文献   
6.
This feature article reports on the use of DNA as a template to assemble dyes and π-conjugated systems with the aim to construct functional multicomponent nanostructures that have a well-defined size, shape and sequence.  相似文献   
7.
The natural product family of fusicoccanes are stabilizers of 14‐3‐3 mediated protein–protein interactions (PPIs), some of which possess antitumor activity. In this study, the first use of molecular dynamics (MD) to rationally design PPI stabilizers with increased potency is presented. Synthesis of a focused library, with subsequent characterization by fluorescence polarization, mutational studies, and X‐ray crystallography confirmed the power of the MD‐based design approach, revealing the potential for an additional hydrogen bond with the 14‐3‐3 protein to lead to significantly increased potency. Additionally, these compounds exert their action in a cellular environment with increased potency. The newly found polar interaction could provide an anchoring point for new small‐molecule PPI stabilizers. These results facilitate the development of fusicoccanes towards drugs or tool compounds, as well as allowing the study of the fundamental principles behind PPI stabilization.  相似文献   
8.
The present research aims to characterize the particle size distribution of sub micron particles suspended in a liquid. The particles milled are an organic poorly water soluble crystalline product. To characterize the size of these particles, different techniques have been tested: imaging techniques (SEM, CryoTEM), static light scattering techniques, dynamic light scattering techniques, centrifugation and flow field flow fractionation. The results indicate that the studied milled particles have a primary particle size close to 180nm and there is strong evidence of larger particles which are very likely aggregates. This is clearly seen from the Cryo TEM results. All the above mentioned techniques should in principle be able to measure samples of dispersion containing particles of ca 180 nm but several are disturbed by the presence of large aggregates. It is difficult to estimate the amount of aggregate present, but most of the time one is interested in what the primary particle size distribution is. It is clear that no single piece of equipment is capable of exactly determining the particle size distribution of our samples, but the static light scattering with low shear on mixing does give a good representation of what is seen with the image analysis by cryo TEM.  相似文献   
9.
The speed and angular distribution of O atoms arising from the photofragmentation of C(5)H(8)-O(2), the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O(2) molecules has been observed. Velocity map images of these "enhanced" O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C(5)H(8)-O(2) complex into the perturbed Herzberg III state ((3)Δ(u)) of O(2). This excitation results in the prompt dissociation of the complex giving rise to products C(5)H(8)+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 ± 200 cm(-1) (239.6±1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 ± 280 cm(-1), corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C(5)H(8)-O(2) + hv → C(5)H(8)-O(2)((3)Δ(u)) → C(5)H(8)O + O and∕or to dissociation of O(2) with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C(5)H(8) (?)-O(2) + hv → C(5)H(8) (?)-O(2)((3)Δ(u)) → C(5)H(8) + O + O. The kinetic energy of the O atoms arising in two other observed channels corresponds to O atoms produced by photodissociation of molecular oxygen in the excited a?(1)Δ(g) and b?(1)Σ(g) (+) singlet states as the precursors. This indicates the formation of singlet oxygen O(2)(a?(1)Δ(g)) and O(2)(b?(1)Σ(g) (+)) after excitation of the C(5)H(8)-O(2) complex. Cooperative excitation of the complex with a simultaneous change of the spin of both partners (1)X-(3)O(2) + hν → (3)X-(1)O(2) → (3)X + (1)O(2) is suggested as a source of singlet oxygen O(2)(a?(1)Δ(g)) and O(2)(b?(1)Σ(g) (+)). This cooperative excitation is in agreement with little or no vibrational excitation of O(2)(a?(1)Δ(g)), produced from the C(5)H(8)-O(2) complex as studied in the current paper as well as from the C(3)H(6)-O(2) and CH(3)I-O(2) complexes reported in our previous paper [Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. The formation of O(2)(a?(1)Δ(g)) from C(5)H(8)-O(2) was observed at λ(pump) = 213-277 nm with the yield going down towards the long wavelength edge of this interval. This spectral profile is interpreted as the red-side wing of the band of a cooperative transition (1)X-(3)O(2) + hν → (3)X(T(2))-(1)O(2)(a?(1)Δ(g)) in the C(5)H(8)-O(2) complex.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号