首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
化学   28篇
力学   5篇
数学   3篇
物理学   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
A liquid chromatography/mass spectrometry (LC/MS) method for separation and characterization of ergosterol biosynthetic precursors was developed to study the effect of Posaconazole on sterol biosynthesis in fungi. Ergosterol biosynthetic precursors were characterized from their electron ionization mass spectra acquired by a normal-phase chromatography, particle beam LC/MS method. Fragment ions resulting from cleavage across the D-ring and an abundant M - 15 fragment ion were diagnostic for methyl substitution at C-4 and C-14. Comparison of the sterol profile in control and treated Candida albicans incubations showed depletion of ergosterol and accumulation of C-4 and C-14 methyl-substituted sterols following treatment with Posaconazole. These C-4 and C-14 methyl sterols are known to be incapable of sustaining cell growth. The results demonstrate that Posaconazole exerts its antifungal activity by inhibition of ergosterol biosynthesis. Furthermore, Posaconazole appears to disrupt ergosterol biosynthesis by inhibition of lanosterol 14alpha-demethylase.  相似文献   
2.
3.
Metabolomics, also referred to in the literature as metabonomics, is a relatively new systems biology tool for drug discovery and development and is increasingly being used to obtain a detailed picture of a drug’s effect on the body. Metabolomics is the qualitative assessment and relative or absolute quantitative measurement of the endogenous metabolome, defined as the complement of all native small molecules (metabolites less than 1,500 Da). A metabolomics study frequently involves the comparative analysis of sample sets from a normal state and a perturbed state, where the perturbation can be of any nature, such as genetic knockout, administration of a drug, or change in diet or lifestyle. Advances in mass spectrometry (MS) technologies including direct introduction or in-line chromatographic separation modes, ionization techniques, mass analyzers, and detection methods have provided powerful tools to assess the molecular changes in the metabolome. This review focuses on advances in MS pertaining to the analytical data generation for the main metabolomics methods, namely, fingerprinting, nontargeted, and targeted approaches, as they are applied to pharmaceutical drug discovery and development.  相似文献   
4.
Dynamic anti-plane fracture problem of an exponentially graded linear magnetoelectroelastic plane with a finite impermeable crack subjected to time-harmonic SH-waves is solved. Directions of wave propagation and material inhomogeneity are chosen in an arbitrary way. The fundamental solution for the coupled system of partial differential equations with variable coefficients is derived in a closed form by the hybrid usage of both an appropriate algebraic transformation for the displacement vector and the Radon transform. The formulated boundary-value problem is solved by a nonhypersingular traction boundary integral equation method (BIEM). The collocation method and parabolic approximation for the unknown generalized crack opening displacements are used for the numerical solution of the posed problem. Quarter point elements placed next to the crack-tips ensure properly modeling the singular behavior of the field variables around the crack tip. Fracture parameters as stress intensity factor, electric field intensity factor and magnetic field intensity factor are computed. Intensive simulations reveal the sensitivity of the generalized intensity factors (GIF) at the crack-tips to the material inhomogeneity, characteristics of the incident wave, coupling effects, wave-material and wave-crack interaction phenomena.  相似文献   
5.
The potential energy surface of the reaction [(eta5-C5MenH5-n)2M]2(micro2,eta2,eta2-N2) + H2 --> [(eta5-C5MenH5-n)2M][(eta5-C5MenH5-n)2MH](micro2,eta2,eta2-NNH) at low-lying singlet and triplet electronic states of the reactants was investigated using density functional methods, for n = 0 and 4, and M = Ti, Zr, and Hf. Ground electronic states of the Ti complexes are found to be triplet states, while that for the corresponding Zr and Hf complexes are singlet states. In their singlet state, all these complexes satisfy known necessary conditions (they have a side-on-coordinated N2 molecule and appropriate frontier orbitals) for successful addition of an H2 molecule to the coordinated N2, and consequently, add of an H2 molecule with a reasonable energy barrier. Hf complexes show slightly higher reactivity than corresponding Zr complexes, and in turn, both are more reactive than their singlet-state Ti counterparts. The calculated trend in reactivity of Zr and Hf complexes is consistent with the latest experimental data (see refs 13 and 16). However, Ti complexes have the ground triplet state that lacks in appropriate frontier orbitals. As a result, H2 addition to the Ti complexes at their triplet ground states requires a larger activation barrier than the singlet state and is endothermic (lacks of driven force for reaction). On the basis of these results, we predict that the [(eta5-C5Me4H)2M]2(micro2,eta2,eta2-N2) and [(eta5-C5H5)2M]2(micro2,eta2,eta2-N2) complexes cannot react with an H2 molecule for M = Ti, while those for M = Zr and Hf can. It was shown that the difference in the B3LYP (hybrid) and PBE (nonhybrid) calculated energy gaps between the lowest closed-shell singlet and triplet states of the present complexes reduces via first- > second- > third-row transition metals; both hybrid and nonhybrid density functionals can be safely used to describe reactivity of the low-lying low-spin and high-spin states of second- and third-row transition metal complexes.  相似文献   
6.
Model membrane systems are gaining more and more interest both for basic studies of membrane-related processes as well as for biotechnological applications. Several different model systems have been reported among which the tethered bilayer lipid membranes (tBLMs) form a very attractive and powerful architecture. In all the proposed architectures, a control of the lateral organization of the structures at a molecular level is of great importance for an optimized preparation. For tBLMs, a homogeneous and not too dense monolayer is required to allow for the functional incorporation of complex membrane proteins. We present here an alternative approach to the commonly used self-assembly preparation. Lipids are spread on the air-water interface of a Langmuir film balance and form a monomolecular film. This allows for a better control of the lateral pressure and distribution for subsequent transfer to solid substrates. In this paper, we describe the properties of the surface monolayer, in terms of surface pressure, structure of the lipid molecule, content of lipid mixtures, temperature, and relaxations features. It is shown that a complete mixing of anchor-lipids and free lipids can be achieved. Furthermore, an increase of the spacer lengths and a decrease of the temperature lead to more compact films. This approach is a first step toward the fully controlled assembly of a model membrane system.  相似文献   
7.
Accurate thermochemical data of small molecules are invaluable to the progress of every aspect of chemistry, especially in the atmosphere, combustion and industry. In this work, photofragmentation translational spectroscopy and 1st principles electronic structure theory reveal the literature value of the heat of formation of chlorine-isocyanate to be in error by more than 40 kcalmol. We report a revised experimental value for D0(Cl-NCO) = 51+/-3 kcal/mol which leads to a Delta Hf (ClNCO) = 8.5+/-3 kcal/mol. High level ab initio (CCSD(T)) electronic structure calculations extrapolated to the complete basis set limit give D0(Cl-NCO) = 6.3 kcal/mol, in good agreement with experiment. In light of the present results, the destabilization of azides relative to isoelectronic isocyanates has been evaluated empirically for three pairs of related molecules. It is found to be 90-110 kcal/mol, and has been attributed mainly to the weakening of the N-NN bond relative to the N-CO bond. Electronic structure calculations employing decomposition analysis suggest that, compared to homopolar N2, the (+delta)CO(-delta) pi polarity provides better orbital interaction (charge transfer) and electrostatic attraction and results in a closer encounter and larger stabilization between the fragments and that this is the origin of isoelectronic destabilization of azides relative to the isocyanates.  相似文献   
8.
Dynamic stress intensity factors (SIFs) for a straight crack in a piezoelectric material under time-harmonic L- and SH-wave loading are determined for different electric boundary conditions. Impermeable, permeable and limited permeable cracks are compared. The problem is formulated and numerically solved using a nonhypersingular traction-based boundary integral equation method where the fundamental solution is obtained by Radon transform. A parametric study in the frequency domain shows the dependence of the SIFs on the choice of the electrical boundary conditions at the crack faces.  相似文献   
9.
Petia M. Vlahovska 《PAMM》2007,7(1):1101601-1101602
Surfactants modify interfacial properties and significantly affect drop behavior in flow. We study the dynamics of a drop, which is covered with a monolayer of insoluble surfactant, in linear viscous flows, both unbounded and in the presence of a wall. The effect of viscosity contrast is included. Analytical results in a form of expansions for weak flows and high viscosity drops are developed. Numerical results with three-dimensional boundary integral simulations are used to explore large deformations. The results show that surfactant generally enhances drop deformation, certainly under small-deformation conditions. The steady-state drop shape and surfactant distribution are independent of viscosity contrast in straining flows (e.g. hyperbolic, axisymmetric strain). The drop shape and surfactant distribution are insensitive to viscosity contrast under small deformation conditions for any linear flow; the effect of the rotational component at higher-order. The theory quantifies the effect of surfactant on drop migration away from a bounding wall as well as the rheology of dilute emulsions. It predicts non-Newtonian features such as shear thinning viscosity and normal stress. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
10.
The formation of malonyl-CoA is catalyzed by acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of de novo fatty acid synthesis. Monitoring the changes of malonyl-CoA concentration in the brain in response to treatments such as pharmaceutical intervention (via ACC inhibitors) or different dietary conditions (such as varied feeding regimes) is of great interest and could help increase the understanding of how this molecule contributes to feeding behavior and overall energy balance. We have developed a sensitive analytical method for the determination of malonyl-CoA levels in rat brain tissue. The assay involved removal of tissue lipids by liquid-liquid extraction followed by LC/MS/MS analysis of the aqueous layer for malonyl-CoA. The method was sensitive enough (limit of quantitation = 50 ng/mL, or approximately 0.018 nmol/g brain tissue) to determine malonyl-CoA in individual rat brain preparations. The assay performance was sufficiently rugged to support drug discovery screening efforts and provided an additional analytical tool for monitoring brain malonyl-CoA levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号