首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学   25篇
物理学   18篇
  2012年   1篇
  2010年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1977年   2篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
The reaction of M2(O2CBu(t))4 (M = Mo, W) with a dicarboxylic acid in toluene yields compounds of general formula [M2]-O2C-X-CO2-[M2] ([M2] = M2(O2CBu(t))3; X = conjugated spacer). The M2 units are electronically coupled via interactions between the M2 delta and dicarboxylate pi* orbitals, and the magnitude of this coupling is revealed by electronic structure calculations and spectroscopic data. These compounds show intense metal to ligand charge transfer (MLCT) absorptions in the visible region of the electronic spectrum that are temperature and solvent dependent. Evidence of electronic coupling is seen in their cyclic voltammograms, which show two successive one-electron oxidations. The extent of electronic coupling in the mixed valence radical cations [M2]-O2C-X-CO2-[M2]+, generated by oxidation with one equivalent of AgPF6 or FeCp2PF6, is evaluated by EPR and UV-vis-NIR spectroscopic data, and delocalized behavior is observed in compounds with W2 units separated by up to 13.6 angstroms. The simplicity of the frontier M2 orbital interactions with the bridge pi orbitals provides a convenient system with which to study electron transfer in mixed valence systems, as compared to the extensively studied, but more complicated, dinuclear t(2g)6/t(2g)5 mixed valence compounds. Oligomeric and polymeric compounds incorporating M2 units have also been synthesized, having general formula [M2(O2CR)2(O2C-Thio-CO2)]n (Thio = n-hexyl substituted ter- and quinque-thiophenes). They can be deposited as thin films by spin coating, and show photoluminescence and electroluminescence. These metallo-polythiophenes show potential for application in electronic materials. (  相似文献   
2.
2,5-Diphenyl-2,5-dipotassiohexane, 2-lithio-4,4-dimethyl-2-phenylpentane, and 1-lithio-2,5,5-trimethylhexene-2 have been prepared, all labelled with13C in the position adjacent to the alkali metal atom. The13C NMR spectra of these compounds have been measured and the13CC coupling constants found for the charged atom. The first two compounds have coupling constants consistent with an sp2 hybridized Cα, with relatively little effect of the charge on the coupling constant. The third compound, when dissolved in either THF or benzene, gave much smaller coupling constants, which are more difficult to interpret.  相似文献   
3.
4.
Addition of the carbene 1,3-dimesitylimidazol-2-ylidene (IMes) to a toluene solution of Ag[closo-CB(11)H(12)] results in the formation of the complex [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)], the anionic component of which contains two silver(I) centers bridged by two carboranes in addition to one terminally bound carborane on each metal, in the solid-state. Comparison of the observed (11)B[(1)H] NMR chemical shifts of [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)] or Ag[closo-CB(11)H(12)] with [NBu(4)][closo-CB(11)H(12)] in CD(2)Cl(2) demonstrates that the silver ion interacts significantly with the cage in solution. Theoretical investigations using the ab initio/GIAO/NMR method of [closo-CB(11)H(12)](-) and Na[closo-CB(11)H(12)] as model geometries for the silver salts support experimental evidence for these Ag...[BH] interactions in solution.  相似文献   
5.
The preparation and characterisation of the tungsten-tungsten quadruply bonded, 3,6-dioxypyridazine bridged complex [((t)BuCO(2))(3)W(2)](2)([micro sign]-H(2)C(4)N(2)O(2)) and its single electron oxidised radical cation are reported and, when compared with related bridged dimolybdenum complexes, reveal a different mechanism of electronic coupling from that seen in related oxalate bridged systems.  相似文献   
6.
Measurements of synchrotron radiation emitted by 30-MeV runaway electrons in the TEXTOR-94 tokamak show that the runaway population decays after switching on neutral beam injection (NBI). The decay starts only with a significant delay, which decreases with increasing NBI heating power. This delay provides direct evidence of the energy dependence of runaway confinement, which is expected if magnetic modes govern the loss of runaways. Application of the theory by Mynick and Strachan [Phys. Fluids 24, 695 (1981)] yields estimates for the "mode width" (delta) of magnetic perturbations: delta<0.5 cm in Ohmic discharges, increasing to delta = 4.4 cm for 0. 6 MW NBI.  相似文献   
7.
The preparation of 2,6-azulenedicarboxylic acid (I) from its diester, 2-CO(2)(t)Bu-6-CO(2)-C(10)H(6) (II), is reported together with the crystal and molecular structure of the ester, II. From the reactions between the dicarboxylic acid I and the MM quadruply bonded complexes M(2)(O(2)C(t)Bu)(4), where M = Mo or W, the azulenedicarboxylate bridged complexes [M(2)(O(2)C(t)Bu)(3)](2)(mu-2,6-(CO(2))(2)-C(10)H(6)) have been isolated, III (M = Mo) and IV (M = W). The latter compounds provide examples of electronically coupled M(2) centers via a polar bridge. The compounds show intense electronic absorptions due to metal-to-bridge charge transfer. This occurs in the visible region of the spectrum for III (M = Mo) but in the near-IR for IV (M = W). One electron oxidation with Ag(+)PF(6)(-) in THF generates the radical cations III(+) and IV(+). By both UV-vis-NIR and EPR spectroscopy the molybdenum ion III(+) is shown to be valence trapped or Class II on the Robin and Day classification scheme. Electrochemical, UV-vis-NIR, and EPR spectroscopic data indicate that, in the tungsten complex ion IV(+), the single electron is delocalized over the two W(2) centers that are separated by a distance of ca. 13.6 A. Furthermore, from the hyperfine coupling to (183)W (I = (1)/(2)), the singly occupied highest molecular orbital is seen to be polarized toward one W(2) center in relationship to the other. Electronic structure calculations employing density functional theory indicate that the HOMO in compounds III and IV is an admixture of the two M(2) delta orbitals that is largely centered on the M(2) unit having proximity to the C(5) ring of the azulenedicarboxylate bridge. The energy of the highest occupied orbital of the bridge lies very close in energy to the M(2) delta orbitals. However, this orbital does not participate in electronic coupling by a hole transfer superexchange mechanism, and the electronic coupling in the radical cations of III and IV occurs by electron transfer through the bridge pi system.  相似文献   
8.
From the reactions between 2,5-dianilinoterephthalic acid and M2(O2CBut)4 in toluene the dicarboxylate bridged complexes [(ButCO2)3M2]2{micro-1,4-(CO2)(2)-2,5-(NHPh)2C6H2}, (M=Mo) and (M=W) have been isolated. The compounds are air sensitive, sparingly soluble in aromatic hydrocarbons but appreciably soluble in tetrahydrofuran. Electronic structure calculations employing density functional theory on the model compounds [(HCO2)3M2]2{micro-1,4-(CO2)(2)-2,5-(NHPh)2C6H2}, indicate that the ground state structure contains a planar bridge and that for molybdenum the HOMO is a bridge based molecular orbital. However, the compounds show reversible oxidation waves (CV and DPV) that for both M=Mo and W are metal based oxidations. Furthermore, the cations + and + are shown to be valence trapped and fully delocalized respectively. The magnitude of the electronic coupling of the two M2 centers, Hab, can be estimated as 383 cm-1 for + and 1500 cm-1 for + based on the corresponding low energy IVCT or charge resonance bands.  相似文献   
9.
10.
The mixed carboxylate diruthenium complexes trans-[Ru 2 II,III (O2CCH3)2(O2CAr)2Cl] (I) and trans-[Ru 2 II,II (O2CCH3)2(O2CAr)2] (II) (O2CAr = 2,6-di(p-tolyl)benzoate) have been synthesised along with [Ru 2 II,III (O2CAr)4Cl] (III) and the homoleptic complex [Ru 2 II,II (O2CAr)4] (IV). The structures trans-[Ru2(O2CCH3)2(O2CAr)2Cl(thf)]·(thf) and [Ru2(O2CAr)4Cl(η 1-CH2Cl2)] were determined by X-ray crystallography, and display the expected paddlewheel arrangement of the carboxylate ligands around the diruthenium core. The structure of III is a rare example of a structurally characterised dichloromethane complex, highlighting the Lewis acidic nature of the diruthenium axial position. The bulky ?O2CAr ligand protects the axial positions from intermolecular interactions in the absence of strong nucleophiles for III and IV, and the effect this has on the electronic structure of the diruthenium core in these complexes was investigated by cyclic voltammetry, electronic absorption spectroscopy and magnetic susceptibility studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号