首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   10篇
力学   5篇
物理学   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1993年   1篇
  1992年   1篇
  1954年   1篇
排序方式: 共有20条查询结果,搜索用时 46 毫秒
1.
2.
We investigate the shear-induced structure formation of colloidal particles dissolved in non-Newtonian fluids by means of computer simulations. The two investigated visco-elastic fluids are a semi-dilute polymer solution and a worm-like micellar solution. Both shear-thinning fluids contain long flexible chains whose entanglements appear and disappear continually as a result of Brownian motion and the applied shear flow. To reach sufficiently large time and length scales in three-dimensional simulations with up to 96 spherical colloids, we employ the responsive particle dynamics simulation method of modeling each chain as a single soft Brownian particle with slowly evolving inter-particle degrees of freedom accounting for the entanglements. Parameters in the model are chosen such that the simulated rheological properties of the fluids, i.e., the storage and loss moduli and the shear viscosities, are in reasonable agreement with experimental values. Spherical colloids dispersed in both quiescent fluids mix homogeneously. Under shear flow, however, the colloids in the micellar solution align to form strings in the flow direction, whereas the colloids in the polymer solution remain randomly distributed. These observations agree with recent experimental studies of colloids in the bulk of these two liquids.  相似文献   
3.
We use molecular dynamics simulations to study phase separation of a 50:50 (by volume) fluid mixture in a confined and curved (Taylor-Couette) geometry, consisting of two concentric cylinders. The inner cylinder may be rotated to achieve a shear flow. In nonsheared systems we observe that, for all cases under consideration, the final equilibrium state has a stacked structure. Depending on the lowest free energy in the geometry the stack may be either flat, with its normal in the z direction, or curved, with its normal in the r or theta direction. In sheared systems we make several observations. First, when starting from a prearranged stacked structure, we find that sheared gradient and vorticity stacks retain their character for the durations of the simulation, even when another configuration is preferred (as found when starting from a randomly mixed configuration). This slow transition to another configuration is attributed to a large free energy barrier between the two states. In case of stacks with a normal in the gradient direction, we find interesting interfacial waves moving with a prescribed angular velocity in the flow direction. Because such a wave is not observed in simulations with a flat geometry at similar shear rates, the curvature of the wall is an essential ingredient of this phenomenon. Second, when starting from a randomly mixed configuration, stacks are also observed, with an orientation that depends on the applied shear rate. Such transitions to other orientations are similar to observations in microphase separated diblock copolymer melts. At higher shear rates complex patterns emerge, accompanied by deviations from a homogeneous flow profile. The transition from steady stacks to complex patterns takes place around a shear rate 1/tau(dv), where tau(dv) is the crossover time from diffusive to viscous dominated growth of phase-separated domains, as measured in equilibrium simulations.  相似文献   
4.
We study the relaxation dynamics of capillary waves in the interface between two confined liquid layers by means of molecular dynamics simulations. We measure the autocorrelations of the interfacial Fourier modes and find that the finite thickness of the liquid layers leads to a marked increase of the relaxation times as compared to the case of fluid layers of infinite depth. The simulation results are in good agreement with a theoretical first-order perturbation derivation, which starts from the overdamped Stokes' equation. The theory also takes into account an interfacial friction, but the difference with no-slip interfacial conditions is small. When the walls are sheared, it is found that the relaxation times of modes perpendicular to the flow are unaffected. Modes along the flow direction are relatively unaffected as long as the equilibrium relaxation time is sufficiently short compared to the rate of deformation. We discuss the consequences for experiments on thin layers and on ultralow surface tension fluids, as well as computer simulations.  相似文献   
5.
We study how varying the Pe?clet number (Pe) affects the steady state sedimentation of colloidal particles that interact through short-ranged attractions. By employing a hybrid molecular dynamics simulation method we demonstrate that the average sedimentation velocity changes from a non-monotonic dependence on packing fraction φ at low Pe numbers, to a monotonic decrease with φ at higher Pe numbers. At low Pe number the pair correlation functions are close to their equilibrium values, but as the Pe number increases, important deviations from equilibrium forms are observed. Although the attractive forces we employ are not strong enough to form permanent clusters, they do induce transient clusters whose behaviour is also affected by Pe number. In particular, clusters are more likely to fragment and less likely to aggregate at larger Pe numbers, and the probability of finding larger clusters decreases with increasing Pe number. Interestingly, the lifetime of the clusters is more or less independent of Pe number in the range we study. Instead, the change in cluster distribution occurs because larger clusters are less likely to form with increasing Pe number. These results illustrate some of the subtleties that occur in the crossover from equilibrium like to purely non-equilibrium behaviour as the balance between convective and thermal forces changes.  相似文献   
6.
Computer simulations based on Discrete Element Method have been performed in order to investigate the influence of interparticle interactions on the kinetics of self-assembly and the mechanical strength of nanoparticle aggregates.Three different systems have been considered.In the first system the interaction between particles has been simulated using the JKR (Johnson,Kendall and Roberts) contact theory,while in the second and third systems the interaction between particles has been simulated using van der Waals and electrostatic forces respectively.In order to compare the mechanical behaviour of the three systems,the magnitude of the maximum attractive force between particles has been kept the same in all cases.However,the relationship between force and separation distance differs from case to case and thus,the range of the interparticle force.The results clearly indicate that as the range of the interparticle force increases,the self-assembly process is faster and the work required to produce the mechanical failure of the assemblies increases by more than one order of magnitude.  相似文献   
7.
在一系列H模放电条件下,建立了一个旨在研究等离子体温度分布剖面不变性的数据库。介绍了数据库建立过程中要解决的关键问题和所用软件,对等离子体温度分布剖面不变性及芯部约束与边缘参数的关系进行了研究。  相似文献   
8.
We use particle-based computer simulations to study the rheology of suspensions of high-functionality star polymers with long entangled arms. Such particles have properties which are intermediate between those of soft colloidal particles and entangled polymer chains. In the simulations, each star polymer is coarse-grained to a single particle. In order to faithfully reproduce dynamical properties, it is very important to not only include time-averaged interactions (potentials of mean force) but to also account for transient interactions induced by entanglements between the arms of different star polymers. Using a model which has all these features, it is found that, for sufficiently high shear rates, the start-up shear stress displays an overshoot. With increasing concentration, the core interactions increasingly dominate the initial stress response, leading to a maximum in the stress overshoot at relatively low strain values (0.1 to 0.5). Transient forces start to dominate after this initial stage. In a simulated experiment in which the shear rate is suddenly stepped-down from a high to a lower value, the stress shows a clear undershoot, with the minimum stress again at a relatively low strain value (based on the new shear rate). Finally, it is shown that a stress plateau develops in the flow curve. This plateau is absent when the transient forces between the polymer stars are not taken into account.  相似文献   
9.
Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.  相似文献   
10.
Recently a microscopic theory for the dynamics of suspensions of long thin rigid rods was presented, confirming and expanding the well-known theory by Doi and Edwards [The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)] and Kuzuu [J. Phys. Soc. Jpn. 52, 3486 (1983)]. Here this theory is put to the test by comparing it against computer simulations. A Brownian dynamics simulation program was developed to follow the dynamics of the rods, with a length over a diameter ratio of 60, on the Smoluchowski time scale. The model accounts for excluded volume interactions between rods, but neglects hydrodynamic interactions. The self-rotational diffusion coefficients D(r)(phi) of the rods were calculated by standard methods and by a new, more efficient method based on calculating average restoring torques. Collective decay of orientational order was calculated by means of equilibrium and nonequilibrium simulations. Our results show that, for the currently accessible volume fractions, the decay times in both cases are virtually identical. Moreover, the observed decay of diffusion coefficients with volume fraction is much quicker than predicted by the theory, which is attributed to an oversimplification of dynamic correlations in the theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号