首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学   7篇
数学   1篇
物理学   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 78 毫秒
1
1.
Alumina-zirconia composite materials were produced with different acid ratios by the sol-gel method using aluminum isopropoxide and zirconium chloride. The composites were produced by changing acid/alkoxside ratio in alumina. The composite materials were calcinated at 600°C, 900°C and 1300°C. The effects of acid concentration and calcination temperature on the surface area and pore radius were determined from the nitrogen adsorption isotherm at 77 K. The density of the composites was also measured. The minimum density of produced material was recorded as 1.35 g cm−3 at an acid/alkoxside ratio of 0.2. The highest specific surface area and pore diameter of the lightest material are 191.86 m2 g−1 and 18.4 Ǻ, respectively. Although pore diameter and specific surface area are not changed at any of the experimental temperatures which were tested by decreasing acid/alkoxside ratio, the density is slightly increased. However, it was observed that the calcination temperature significantly affects the surface area and density of the material.   相似文献   
2.
Difference in the kinetics of chemiluminescence (CL) and differential scanning calorimetry records for decomposition of originally solid benzoyl peroxide continuing as a melt reaction was outlined. While the main portion of heat measured by DSC is released in the spontaneous decomposition of benzoyl peroxide starting as a homolytic scission of peroxidic bonds, the CL light emission in oxygen comes presumably from the subsequent disproportionation reaction of polyphenyl peroxyl radicals and monitors the induced decomposition of peroxide. Thermogravimetry revealed that oxygen remains partially bound to the products of benzoyl peroxide decomposition.  相似文献   
3.
Queuing systems with finite buffers are reasonable models for many manufacturing, telecommunication, and healthcare systems. Although some approximations exist, the exact analysis of multi‐server and finite‐buffer queues with general service time distribution is unknown. However, the phase‐type assumption for service time is a frequently used approach. Because the Cox distribution, a kind of phase‐type distribution, provides a good representation of data with great variability, it has a vast area of application in modeling service times. The research focus is twofold. First, a theoretical structure of a multi‐server and finite‐buffer queuing system in which the service time is modeled by the two‐phase Cox distribution is studied. It is focused on finding an efficient solution to the stationary probabilities using the matrix‐geometric method. It is shown that the stationary probability vector can be obtained with the matrix‐geometric method by using level‐dependent rate matrices, and the mean queue length is computed. Second, an empirical analysis of the model is presented. The proposed methodology is applied in a case study concerning the geriatric patients. Some numerical calculations and optimizations are performed by using geriatric data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
Surface functionalization plays a crucial role in the design of biosensors. For this purpose, a novel functional monomer, 6‐(4,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐2H‐benzo[d][1,2,3]triazol‐2‐yl)hexan‐1‐amine (BEDOA‐6), was designed and synthesized. Poly(BEDOA‐6) was utilized as an immobilization matrix for glucose oxidase biosensor construction. Moreover, polymethylmethacrylate (PMMA) layered silicate nanocomposites were prepared by in situ suspension polymerization. Conducting polymer surface was modified with PMMA/clay nanocomposite material and a glucose biosensor was developed. In addition, XPS and SEM were utilized to characterize the surface properties. The biosensor shows a wide linear range between 2.8 µM and 1.2 mM to glucose with a low detection limit of 1.99 µM. Finally, the biosensor was tested on serum samples containing actual human blood. The results were in well‐agreement with a reference method.  相似文献   
5.
Kevlar and Nomex are high-performance polymers which have wide varieties of applications in daily life. Recently, they have been proposed to be biocidal materials when reacted with household bleach (sodium hypochlorite solution) because they contain amide moieties which can be chlorinated to generate biocidal N-halamine functional groups. Although Nomex can be chlorinated without any significant decomposition, Kevlar decomposes under the same chlorination conditions. In this study, two mimics for each of the polymers were synthesized to simulate the carboxylate and diaminophenylene components of the materials. It was found that the p-diaminophenylene component of the Kevlar mimic is oxidized to a quinone-type structure upon treatment with hypochlorous acid, which then decomposes. However, such a mechanism for the Nomex mimic is not possible. In this paper, based upon these observations, a plausible answer will be provided to the title question.  相似文献   
6.
The antimicrobial compounds 1-chloro-3,5,5-trimethylhydantoin and 3-chloro-1,5,5-trimethylhydantoin (1 and 2, respectively) have been synthesized and examined via a joint experimental and computational study. The measured rate of loss of oxidative chlorine in the absence and presence of exposure to UVA irradiation determined 2 to be less stable than 1. An interesting migration reaction was observed during UVA irradiation that featured the production of chlorine rearrangement and dechlorinated compounds. Two novel hydrogen atom transfer reaction (HATR) mechanisms have been proposed: (1) an intramolecular process in which a hydrogen atom undergoes a series of sigmatropic shifts, and (2) an intermolecular pathway in which a radical abstracts a hydrogen atom from a neighboring molecule. Density functional theory (DFT) calculations at the UB3LYP/6-311G++(2d,p) theory level have been employed to elucidate the preferred reaction pathway. Both proposed HATR mechanisms predicted 2 to possess a lower free energy of activation, ΔG(?), relative to 1 in accordance with the experimental stability measurements. However, the intermolecular route had an overall lower absolute ΔG(?) and was more consistent with measured product ratios in solution. The intermolecular reaction pathway, unlike the intramolecular route, also predicted the lack of formation of a migration product featuring a Cl covalently bonded to a methylene group at the 5-position of the hydantoin moiety, which was verified by NMR experiments.  相似文献   
7.
Numerical analysis of long wavelength infrared HgCdTe photodiodes   总被引:4,自引:0,他引:4  
We present a detailed investigation of the performance limiting factors of long and very long wavelength infrared (LWIR and VLWIR) p on n Hg1−xCdxTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination (G-R) mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. The results identify the relative strengths of the dark current generation mechanisms by numerically extracting the contribution of each G-R mechanism to the detector characteristics with various cut-off wavelengths (λc) and practically achievable material parameters.The results show that the dominant sensitivity degrading trap level depends on the detector cut-off wavelength being ∼0.7Eg for LWIR HgCdTe sensors (λc = ∼10 μm) instead of 0.5Eg which is generally believed to be the most efficient R-G level. TAT related 1/f noise dominates the sensor noise even under small reverse bias voltages at a trap density as low as 1 × 1014 cm−3 for sensors with λc > 11 μm. Considering the fact that trap densities below this level are rarely reported for HgCdTe material, exceptionally trap-free material is required to achieve desirable imaging performance with these sensors. Simulation results show that Auger mechanism has twofold effect on the sensitivity of the sensor by increasing the dark current and decreasing the photo current of the detector.  相似文献   
8.
Three heterocyclic N-halamine structures containing amine, amide, or both functional groups were immobilized onto cotton fabric through epoxide tethering. The coatings were rendered biocidal upon exposure to dilute household bleach solution. The coatings exhibited superior biocidal functionality with complete inactivation of about 6 logs of Staphylococcus aureus and Escherichia coli O157:H7 within 2–10 min contact time depending on the structure. Moreover, the coatings were quite stable against repeated laundering so that recharging was not even necessary after 50 washing cycles. Stability of the coatings against ultraviolet light exposure was studied with a comparison of the amide- and amine-containing N-halamines.  相似文献   
9.
Two N-halamine copolymer precursors, poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-acrylic acid potassium salt) and poly(2,2,6,6-tetramethyl-4-piperidyl methacrylate-co-trimethyl-2-methacryloxyethylammonium chloride) have been synthesized and successfully coated onto cotton fabric via a layer-by-layer (LbL) assembly technique. A multilayer thin film was deposited onto the fiber surfaces by alternative exposure to polyelectrolyte solutions. The coating was rendered biocidal by a dilute household bleach treatment. The biocidal efficacies of tested swatches composed of treated fibers were evaluated against Staphylococcus aureus and Escherichia coli. It was determined that chlorinated samples inactivated both S. aureus and E. coli O157:H7 within 15 min of contact time, whereas the unchlorinated control samples did not exhibit significant biocidal activities. Stabilities of the coatings toward washing and ultraviolet light exposure have also been studied. It was found that the stability toward washing was superior, whereas the UVA light stability was moderate compared to previously studied N-halamine moieties. The layer-by-layer assembly technique can be used to attach N-halamine precursor polymers onto cellulose surfaces without using covalently bonding tethering groups which limit the structure designs. In addition, ionic precursors are very soluble in water, thus promising for biocidal coatings without the use of organic solvents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号