首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   4篇
数学   2篇
物理学   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2000年   4篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Social action is situated in fields that are simultaneously composed of interpersonal ties and relations among organizations, which are both usefully characterized as social networks. We introduce a novel approach to distinguishing different network macro-structures in terms of cohesive subsets and their overlaps. We develop a vocabulary that relates different forms of network cohesion to field properties as opposed to organizational constraints on ties and structures. We illustrate differences in probabilistic attachment processes in network evolution that link on the one hand to organizational constraints versus field properties and to cohesive network topologies on the other. This allows us to identify a set of important new micro-macro linkages between local behavior in networks and global network properties. The analytic strategy thus puts in place a methodology for Predictive Social Cohesion theory to be developed and tested in the context of informal and formal organizations and organizational fields. We also show how organizations and fields combine at different scales of cohesive depth and cohesive breadth. Operational measures and results are illustrated for three organizational examples, and analysis of these cases suggests that different structures of cohesive subsets and overlaps may be predictive in organizational contexts and similarly for the larger fields in which they are embedded. Useful predictions may also be based on feedback from level of cohesion in the larger field back to organizations, conditioned on the level of multiconnectivity to the field.  相似文献   
2.
The reaction of 2‐[13C]‐1‐ethyl‐3‐isopropyl‐3,4,5,6‐tetrahydropyrimidin‐1‐ium hexafluorophosphate ([13C1]‐ 1 ‐PF6) with a slight excess (1.03 equiv) of dimeric potassium hexamethyldisilazide (“(K‐HMDS)2”) in toluene generates 2‐[13C]‐3‐ethyl‐1‐isopropyl‐3,4,5,6‐tetrahydropyrimid‐2‐ylidene ([13C1]‐ 2 ). The hindered meta‐stable N,N‐heterocyclic carbene [13C1]‐ 2 thus generated undergoes a slow but quantitative reaction with toluene (the solvent) to generate the aminal 2‐[13C]‐2‐benzyl‐3‐ethyl‐1‐isopropylhexahydropyrimidine ([13C1]‐ 14 ) through formal C? H insertion of C(2) (the “carbene carbon”) at the toluene methyl group. Despite a significant pKa mismatch (ΔpKa 1 + and toluene estimated to be ca. 16 in DMSO) the reaction shows all the characteristics of a deprotonation mechanism, the reaction rate being strongly dependent on the toluene para substituent (ρ=4.8(±0.3)), and displaying substantial and rate‐limiting primary (kH/kD=4.2(±0.6)) and secondary (kH/kD=1.18(±0.08)) kinetic isotope effects on the deuteration of the toluene methyl group. The reaction is catalysed by K‐HMDS, but proceeds without cross over between toluene methyl protons and does not involve an HMDS anion acting as base to generate a benzyl anion. Detailed analysis of the reaction kinetics/kinetic isotope effects demonstrates that a pseudo‐first‐order decay in 2 arises from a first‐order dependence on 2 , a first‐order dependence on toluene (in large excess) and, in the catalytic manifold, a complex noninteger dependence on the K‐HMDS dimer. The rate is not satisfactorily predicted by equations based on the Brønsted salt‐effect catalysis law. However, the rate can be satisfactorily predicted by a mole‐fraction‐weighted net rate constant: ?d[ 2 ]/dt=({x 2 kuncat}+{(1?x 2 ) kcat})[ 2 ]1[toluene]1, in which x 2 is determined by a standard bimolecular complexation equilibrium term. The association constant (Ka) for rapid equilibrium–complexation of 2 with (K‐HMDS)2 to form [ 2 (K‐HMDS)2] is extracted by nonlinear regression of the 13C NMR shift of C(2) in [13C1]‐ 2 versus [(K‐HMDS)2] yielding: Ka=62(±7) M ?1; δC(2) in 2 =237.0 ppm; δC(2) in [ 2 (K‐HMDS)2]=226.8 ppm. It is thus concluded that there is discrete, albeit inefficient, molecular catalysis through the 1:1 carbene/(K‐HMDS)2 complex [ 2 (K‐HMDS)2], which is found to react with toluene more rapidly than free 2 by a factor of 3.4 (=kcat/kuncat). The greater reactivity of the complex [ 2 (K‐HMDS)2] over the free carbene ( 2 ) may arise from local Brønsted salt‐effect catalysis by the (K‐HMDS)2 liberated in the solvent cage upon reaction with toluene.  相似文献   
3.
Energy spectra for decaying 2D turbulence in a bounded domain   总被引:1,自引:0,他引:1  
We use results derived in the framework of the replica approach to study the liquid-glass thermodynamic transition. The main results are derived without using replicas and applied to the study of the Lennard-Jones binary mixture introduced by Kob and Andersen. We find that there is a phase transition due to the entropy crisis. We compute both analytically and numerically the value of the phase transition point T(K) and the specific heat in the low temperature phase.  相似文献   
4.
The kinetics of Pd-catalyzed Tsuji-Trost allylation employing simple phosphine ligands (L = Ar3P, etc.) are consistent with turnover-limiting nucleophilic attack of an electrophilic [L2Pd(allyl)]+ catalytic intermediate. Counter-intuitively, when L is made more electron donating, which renders [L2Pd(allyl)]+ less electrophilic (by up to an order of magnitude), higher rates of turnover are observed. In the presence of catalytic NaBAr'F, large rate differentials arise by attenuation of ion-pair return (via generation of [L2Pd(allyl)]+ [BAr'F]-) a process that also increases the asymmetric induction from 28 to 78% ee in an archetypal asymmetric allylation employing BINAP (L*) as ligand. There is substantial potential for analogous application of [M]n+([BAr'F]-)n cocatalysis in other transition metal catalyzed processes involving an ionic reactant or reagent and an ionogenic catalytic cycle.  相似文献   
5.
6.
Editorial Comment Last month we presented, as a Special Feature, a set of five articles that constituted a Commentary on the fundamentals and mechanism of electrospray ionization (ESI). These articles produced some lively discussion among the authors on the role of electrochemistry in ESI. Six authors participated in a detailed exchange of views on this topic, the final results of which constitute this month's Special Feature. We particularly hope that younger scientists will find value in this month's Special Feature, not only for the science that it teaches but also what it reveals about the processes by which scientific conclusions are drawn. To a degree, the contributions part the curtains on these processes and show science in action. We sincerely thank the contributors to this discussion. The give and take of intellectual debate is not always easy, and to a remarkable extent this set of authors has maintained good humor and friendships, even when disagreeing strongly on substance. Graham Cooks and Richard Caprioli Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
7.
A survey of derivatization strategies and prospective derivatization reactions for conversion of simple alkenes and alkynes to 'electrospray-active' species is presented. General synthetic strategies are discussed and illustrative examples of prospective derivatives prepared from model compounds are presented along with their electrospray ionization (ES) mass spectra. The identified derivatives of these neutral, nonpolar analytes are either ionic or are ionizable in solution through Bronsted acid/base chemistry, by Lewis acid/base chemistry, or by chemical or electrochemical electron-transfer chemistry. Once ionized, the derivatives are expected to be amenable to detection by electrospray ionization-mass spectrometry. Derivatives are identified for positive and negative ion analysis of both alkenes and alkynes. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号