首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
化学   14篇
力学   1篇
数学   4篇
物理学   5篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2000年   2篇
  1991年   1篇
  1990年   1篇
  1980年   2篇
  1975年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
2.
3.
The time-of-flight mass spectra of tris(2,2,6,6-tetramethyl-3,5-heptanedionato) lanthanide(III) [or Ln(thd)3 with Ln = Eu, Tb, Gd] produced by laser-induced multiphoton ionization in a supersonic expansion were studied as a function of laser excitation wavelength. Resonance-enhanced multiphoton ionization (REMPI), monitoring the Eu(I) ion signal from gas-phase Eu(thd)3, was observed in three distinct visible-excitation regions, corresponding to electronic absorption transitions on neutral Eu(0) atoms. The confirmation of the presence of Eu(0) atoms in the beam supports the proposed mechanism for the production of Ln atoms through sequential dissociation of neutral thd ligands from the metal following photoexcitation into ligand-to-metal charge-transfer (LMCT) states. Evidence is also presented that the LnO+ and LnOH+ fragments observed in the mass spectrum are produced via a separate, competing fragmentation pathway. The branching ratios between the two fragmentation pathways are compared for Ln(thd)3 (Ln = Eu, Tb, Gd). The ligand-dissociation pathway that produces Ln atoms appears to be more favorable in Ln(thd)3 complexes with low-lying LMCT states. Finally, the observation of the Tb2(thd)6+ dimer and its associated fragmentation pattern, as well as the presence of metal carbides, which are relevant to carbon contamination in chemical vapor deposition, is discussed.  相似文献   
4.
Novel nanoscale fluorescent materials are integral to the progress of emergent fields such as nanobiotechnology and facilitate new research in a variety of contexts. Sol-gel derived silica is an excellent host material for creating fluorescent nanoparticles by the inclusion of covalently-bound organic dyes. Significant enhancements in the brightness and stability of organic dye emission can be achieved for silica-based core-shell nanoparticle architectures at length scales down to tens of nanometers with narrow size distributions. This tutorial review will highlight these findings and describe the evolution of the fluorescent core-shell silica nanoparticle concept towards integration of multiple functionalities including mesoporosity, metal nanoshells and quantitative chemical sensing. These developments point towards the development of "lab on a particle" architectures with promising prospects for nanobiotechnology, drug development and beyond.  相似文献   
5.
6.
Practical solutions to the production scheduling problem must provide two broad capabilities:
  1. i)
    an ability to efficiently generate schedules that reflect the actual constraints and objectives of the manufacturing environment, and
     
  2. ii)
    an ability to incrementally revise these schedules over time in response to unexpected executional circumstances. In this paper, we advocate a common view of predictive and reactive scheduling as an incremental problem solving process that is opportunistically focused by characteristics of the current solution constraints.
     
We describe the architecture of OPIS (opportunistic intelligent scheduler), which defines a general framework for configuring scheduling systems according to this view. We then examine the scheduling knowledge (e.g. analysis and scheduling methods, schedule generation or revision strategies) that is exploited within this architecture by the current OPIS scheduler. Experimental studies with the OPIS scheduler have demonstrated the potential of this constraint-directed scheduling methodology in both predictive and reactive scheduling contexts.  相似文献   
7.
Laser photoionization and ligand photodissociation in Ln(thd)(3) (Ln = Eu, Tb, Gd; thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) are studied in a molecular beam via time-of-flight mass spectrometry. The fragmentation patterns are strongly wavelength dependent. With 355 nm excitation, the mass spectrum is dominated by Ln(2+), Ln(+), and LnO(+) fragments. The bare Ln ions are believed to arise from photoionization of neutral Ln atoms. The Ln atoms, in turn, are produced from the Ln(thd)(3) complex in a sequence of Ln reductions (through ligand-to-metal charge-transfer transitions), with each reduction being accompanied by the dissociation of a neutral ligand radical. In contrast, under visible-light (410-450 nm) excitation, a significant Ln(thd)(n)(+) signal is observed (where n = 2,3 for Ln = Tb,Gd and n = 1-3 for Ln = Eu). Thus, with visible excitation, photoionization of Ln(thd)(n) competes effectively with the Ln-reduction/ligand-dissociation sequence that leads to the dominant bare Ln-ion signal seen with 355 nm excitation. The fact that monoligated Ln(thd)(+) is observed only for Ln = Eu is interpreted in terms of the relative accessibility of an excited ligand-to-metal charge-transfer state from the ground electronic state of neutral Ln(thd).  相似文献   
8.
9.
In the present study, a poly(isoprene-block-dimethylamino ethyl methacrylate) diblock copolymer (PI-b-PDMAEMA) is used to structure-direct a polysilazane pre-ceramic polymer, commercially known as Ceraset. To the polymer was added a 2-fold excess in weight of the silazane oligomer (Ceraset). The resulting composite was cast into films, and after cooperative self-assembly of block copolymer and Ceraset, the structure was permanently set in the hexagonal columnar morphology, as evidenced by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Cross-linking of the silazane oligomer was achieved with a radical initiator at 120 degrees C. Upon heating of the composite to 1500 degrees C under nitrogen, the structure is preserved and a mesoporous ceramic material is obtained, as demonstrated by SAXS and TEM. The pores are open and accessible, as evidenced by nitrogen sorption/desorption measurements indicating a surface area of about 51 m2 g-1 and a pore diameter of 13 nm, consistent with TEM analysis. These results suggest that the use of block copolymer mesophases may provide a simple, easily controlled pathway for the preparation of various high-temperature ceramic mesostructures.  相似文献   
10.
The photofragmentation of (3-Me-4',6'-dfppy)Pt(dpm) (dfppy = difluorophenylpyridinato; dpm = dipivaloylmethyl or 2,2,6,6,-tetramethyl-3,5-heptanedionato- O, O) in a molecular beam is reported. Time-of-flight mass spectra (TOF-MS) and resonance-enhanced multiphoton ionization (REMPI) data are presented and discussed. The dissociation patterns are strongly wavelength-dependent. With 355 nm excitation, the heaviest mass platinum-containing fragments are Pt(+) and diatomic PtC(+). The formation of PtC(+) is the result of an intramolecular rearrangement on the ligand. During irradiation with 410-500 nm light, the fragmentation pattern changes such that the parent ion and platinum-containing fragments of the parent are formed in abundant yield. The (3-Me-4',6'-dfppy) ligand remains intact and coordinated to platinum, but coordinated (dpm) successively breaks apart. A spin-forbidden charge-transfer absorption band centered at around 460 nm plays an important role in the gas-phase photoexcitation of the parent molecule; it is observed in the REMPI spectrum of the parent ion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号