首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
化学   33篇
数学   6篇
物理学   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2003年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有41条查询结果,搜索用时 312 毫秒
1.
2.
Four new clathrates of the formula M(Im)2Ni(CN)4·2·Dioxane (where M = Co, Ni, Cu, Cd; Im = Imidazole) have been prepared in powder form and their FT-IR and laser-Raman spectra are reported for the first time. These clathrates are analogues to the previously reported classical Hofmann type clathrates except for the copper clathrate. The Cu clathrate has different spectral features in comparison with its analogues due to the Jahn-Teller effect.  相似文献   
3.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   
4.
Abstract

Electrically conducting polypyrrole grafts with poly[(methyl meth-acrylate)-co-(2-(N-pyrrolyl) ethyl methacrylate)] (PMMA-co-PEMA) were synthesized by constant potential electrolysis. Cyclic Voltammetry, DSC, TGA, SEM and elemental analysis were used in order to characterize the free standing films. Conductivities of the polymers were measured by a four-probe technique.  相似文献   
5.
This study focuses on the preparation, single crystal X-ray diffraction, characterization, and optical properties of some anthraquinone-based dyes. The anthraquinone-based antimicrobial dye N-{2-[(9,10-dioxo-9,10-dihydroanthracen-1-yl)amino]-2-oxoethyl}-N,N-dimethylbutan-1-aminium chloride monohydrate (III) was obtained from 1-aminoanthraquinone (I) via 2-chloro-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (II) using known preparation and characterization methods. Single crystal X-ray diffraction analysis of III revealed a monoclinic system, space group P21/n, Z = 4. Photoluminescence properties of anthraquinone dyes I–III were also investigated. These dyes gave an intense emission (λmax = 341 nm) upon the irradiation by UV light and showed photoluminescence quantum yields of 73 %, 66 %, and 61 % with long excited-state lifetimes of 6.87 ns, 6.14 ns, and 5.69 ns, respectively. These anthraquinone dyes are of interest as an organic light emitting material for electroluminescent devices.  相似文献   
6.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
7.
5-Aryl-2(5H)-furanones can be synthesized by the Rh-catalyzed reactions of arylboronic acids with internal alkynes under a CO atmosphere.  相似文献   
8.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   
9.
10.
The free‐radical cyclopolymerization of diallyl ether (1) and methyl α‐(allyloxymethyl)acrylate (2) has been modeled with the B3LYP/6‐31G* methodology, by making use of model compounds for the growing radicals. The cyclization of both monomers is exo, with activation barriers of 5.33 and 9.82 kcal/mol, respectively. To account for the polymerizabilities of these monomers, competing reactions have also been modeled. Although both monomers have a lower barrier for homopolymerization than for cyclization, cyclization dominates due to entropy. This explains the high cyclopolymerization vs. homopolymerization of monomer 2, although its monofunctional counterpart has been reported to homopolymerize well. It has also been shown that the degradative chain transfer by H‐abstraction from the allylic carbon is not effective with this monomer. Poor cyclopolymerization of the monomer 1 has been demonstrated by modeling the degradative chain transfer by H‐abstraction from the allylic carbon, which has been shown to compete very efficiently with polymerization reactions. Additionally, intermolecular propagation reaction has been shown to be facile due to cyclization, since the attacking monomer adopts a cyclic structure. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号