首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
化学   64篇
力学   3篇
数学   18篇
物理学   5篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   19篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2002年   1篇
  2001年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
As alternative hydrophobic adsorbent for DNA adsorption, supermacroporous cryogel disks were synthesized via free radical polymerization. In this study, we have prepared two kinds of cryogel disks: (i) poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐l ‐tryptophan) [p(HEMA‐MATrp)] cryogel containing specific hydrophobic ligand MATrp; and (ii) monosize p(HEMA‐MATrp) particles synthesized via suspension polymerization embedded into p(HEMA) cryogel structure to obtain p(HEMA‐MATrp)/p(HEMA) composite cryogel disks. These cryogel disks containing hydrophobic functional group were characterized via swelling studies, Fourier transform infrared spectroscopy, elemental analysis, surface area measurements and scanning electron microscopy. DNA adsorption onto both p(HEMA‐MATrp) cryogel and p(HEMA‐MATrp)/p(HEMA) composite cryogels was investigated. Maximum adsorption of DNA on p(HEMA‐MATrp) cryogel was found to be 15 mg/g polymer. Otherwise, p(HEMA‐MATrp)/p(HEMA) composite cryogels significantly increased the DNA adsorption capacity to 38 mg/g polymer. Composite cryogels could be used repeatedly without significant loss on adsorption capacity after 10 repetitive adsorption–desorption cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Myoglobin is a primary iron, and oxygen-binding protein of muscle tissues and levels can be an important diagnostic biomarker for acute myocardial infarction, myocardial necrosis, or other cardiac diseases. The establishment of myoglobin recognition systems is important because of its protein’s structural and functional values in physiology, biochemistry, and diagnostic value in some damaged muscle tissue and cardiac diseases. For this purpose, we used molecular imprinting technique for myoglobin recognition from aqueous solutions and human plasma. In the first step, myoglobin-imprinted poly(hydroxyethyl methacrylate) (PHEMA) cryogels (MGb-MIP) were prepared, and optimum myoglobin adsorption conditions were determined. Selectivity experiments have been done with the competitive proteins, and myoglobin adsorption from IgG and albumin-free human plasma was studied. The purity of the desorbed samples was determined with SDS-PAGE. The desorption efficiency and reusability of the MGb-MIP cryogels were tested, and it was shown that without any significant loss in the adsorption capacity, MGb-MIP cryogels can be used a number of times for myoglobin recognition and separation.  相似文献   
3.
Photoemission from the two outermost ionizations [highest occupied molecular orbitals (HOMO and HOMO-1)] of Mg(eta(5)-C(5)H(5))(2) has been studied with synchrotron radiation in the gas phase. Strong oscillations in the HOMO-1/HOMO ratio, qualitatively similar to those well-known for fullerenes, are found. Excellent agreement with the experimental ratio is provided by accurate cross section calculations both at the density-functional theory and time-dependent density-functional theory level, indicating that a many electron response has a minor role for this effect. A comparison with the calculated values for other metal sandwich compounds indicate that the presence of oscillations is a widespread phenomenon, and a potential source of interesting information on the structural and electronic properties of the target molecule.  相似文献   
4.
In this paper we examine the various effects that workstations and rework loops with identical parallel processors and stochastic processing times have on the performance of a mixed-model production line. Of particular interest are issues related to sequence scrambling. In many production systems (especially those operating on just-in-time or in-line vehicle sequencing principles), the sequence of orders is selected carefully to optimize line efficiency while taking into account various line balancing and product spacing constraints. However, this sequence is often altered due to stochastic factors during production. This leads to significant economic consequences, due to either the degraded performance of the production line, or the added cost of restoring the sequence (via the use of systems such as mix banks or automated storage and retrieval systems). We develop analytical formulas to quantify both the extent of sequence scrambling caused by a station of the production line, and the effects of this scrambling on downstream performance. We also develop a detailed Markov chain model to analyze related issues regarding line stoppages and throughput. We demonstrate the usefulness of our methods on a range of illustrative numerical examples, and discuss the implications from a managerial point of view.  相似文献   
5.
Affinity adsorption technique is increasingly used for protein purification, separation and other biochemical applications. Therapeutic molecules such as antibodies, cytokines, therapeutic DNA and plasma proteins must be purified before characterization and utilization. The aim of this study was to prepare micronsized spherical polymeric beads and to investigate the extent of their human insulin adsorption capability. Monosize poly(ethylene glycol dimethacrylate-N-methacryloyl-(L)-histidine) [poly(EDMA-MAH)] beads were prepared by modified suspension copolymerization. Functional monomer (MAH) was synthesized using methacryloyl chloride and L-histidine. The beads were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, swelling test and elemental analysis. MAH incorporation into monosize polymeric beads, having an average size around 2-3 μm, was estimated as 55.3 μmol MAH/g bead. Equilibrium swelling ratios of poly(EDMA-MAH) and poly(EDMA) beads were 65% and 55%, respectively. Adsorption experiments were performed under different conditions (i.e., pH, temperature, protein concentration and ionic strength). It was found that adsorption characteristics are strongly depend on these conditions. Maximum insulin adsorption capacity was achieved as 24.7 mg insulin/g poly(EDMA-MAH) beads. Results were well fitted to the Langmuir isotherm model. Compared with poly(EDMA-MAH), nonspecific insulin adsorption onto poly(EDMA) beads was very low (0.61 mg insulin/g bead) and can be negligible. It was observed that insulin could be repeatedly adsorbed and desorbed (at least 10 times) without significant loss in adsorption capacity.  相似文献   
6.
A new homogeneous iridium catalyst gives hydrogenation of quinolines under unprecedentedly mild conditions-as low as 1 atm of H(2) and 25 °C. We report air- and moisture-stable iridium(I) NHC catalyst precursors that are active for reduction of a wide variety of quinolines having functionalities at the 2-, 6-, and 8- positions. A combined experimental and theoretical study has elucidated the mechanism of this reaction. DFT studies on a model Ir complex show that a conventional inner-sphere mechanism is disfavored relative to an unusual stepwise outer-sphere mechanism involving sequential proton and hydride transfer. All intermediates in this proposed mechanism have been isolated or spectroscopically characterized, including two new iridium(III) hydrides and a notable cationic iridium(III) dihydrogen dihydride complex. DFT calculations on full systems establish the coordination geometry of these iridium hydrides, while stoichiometric and catalytic experiments with the isolated complexes provide evidence for the mechanistic proposal. The proposed mechanism explains why the catalytic reaction is slower for unhindered substrates and why small changes in the ligand set drastically alter catalyst activity.  相似文献   
7.
For a proper cone \({{\mathcal K}\subset\mathbb{R}^n}\) and its dual cone \({{\mathcal K}^*}\) the complementary slackness condition \({\langle{\rm {\bf x}},{\rm {\bf s}}\rangle=0}\) defines an n-dimensional manifold \({C({\mathcal K})}\) in the space \({{\mathbb R}^{2n}}\) . When \({{\mathcal K}}\) is a symmetric cone, points in \({C({\mathcal K})}\) must satisfy at least n linearly independent bilinear identities. This fact proves to be useful when optimizing over such cones, therefore it is natural to look for similar bilinear relations for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for points in \({C({\mathcal K})}\) . We examine several well-known cones, in particular the cone of positive polynomials \({{\mathcal P}_{2n+1}}\) and its dual, and show that there are exactly four linearly independent bilinear identities which hold for all \({({\rm {\bf x}},{\rm {\bf s}})\in C({\mathcal P}_{2n+1})}\), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials. We prove similar results for Müntz polynomials.  相似文献   
8.
In this study, a Hermite matrix method is presented to solve high‐order linear Fredholm integro‐differential equations with variable coefficients under the mixed conditions in terms of the Hermite polynomials. The proposed method converts the equation and its conditions to matrix equations, which correspond to a system of linear algebraic equations with unknown Hermite coefficients, by means of collocation points on a finite interval. Then, by solving the matrix equation, the Hermite coefficients and the polynomial approach are obtained. Also, examples that illustrate the pertinent features of the method are presented; the accuracy of the solutions and the error analysis are performed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1707–1721, 2011  相似文献   
9.
Ruthenium polypyridyl complexes have seen extensive use in solar energy applications. One of the most efficient dye-sensitized solar cells produced to date employs the dye-sensitizer N719, a ruthenium polypyridyl thiocyanate complex. Thiocyanate complexes are typically present as an inseparable mixture of N-bound and S-bound linkage isomers. Here we report the synthesis of a new complex, [Ru(terpy)(tbbpy)SCN][SbF(6)] (terpy = 2,2';6',2'-terpyridine, tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), as a mixture of N-bound and S-bound thiocyanate linkage isomers that can be separated based on their relative solubility in ethanol. Both isomers have been characterized spectroscopically and by X-ray crystallography. At elevated temperatures the isomers equilibrate, the product being significantly enriched in the more thermodynamically stable N-bound form. Density functional theory analysis supports our experimental observation that the N-bound isomer is thermodynamically preferred, and provides insight into the isomerization mechanism.  相似文献   
10.
For a tandem line of finite, single-server queues operating under the production blocking mechanism, we study the effects of pooling several adjacent stations and the associated servers into a single station with a single team of servers. We assume that the servers are cross-trained (so that they can work at several different stations) and that two or more servers can cooperate on the same job. For such a system, we provide sufficient conditions on the service times and sizes of the input and output buffers at the pooled station under which pooling will decrease the departure time of each job from the system (and hence increase the system throughput). We also show that pooling decreases the total number of jobs in the system at any given time and the sojourn time of each job in the system if the departure time of each job from the system is decreased by pooling and there is an arrival stream at the first station. Moreover, we provide sufficient conditions under which pooling will improve the holding cost of each job in the system incurred before any given time, and extend our results to closed tandem lines and to queueing networks with either a more general blocking mechanism or probabilistic routing. Finally, we present a numerical study aimed at quantifying the improvements in system performance obtained through pooling and at understanding which stations should be pooled to achieve the maximum benefit. Our results suggest that the improvements gained by pooling may be substantial and that the bottleneck station should be among the pooled stations in order to obtain the greatest benefit. AMS subject classification: 90B22  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号