首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   
2.
Relaxation dynamics of PVDF blended with a random zwitterionic copolymer (r-ZCP) of methyl methacrylate and zwitterionic sulfobetaine-2-vinylpyridine (PMMA-r-SB2VP) were investigated using dielectric relaxation spectroscopy. FTIR spectroscopy was used to determine the PVDF crystal phase of compression molded blends. Adding 25 wt% of r-ZCP promoted the formation of the polar β and γ crystals over the nonpolar α phase. A structural model is proposed where the r-ZCP biases the PVDF to form polar crystal phases. Boyd's model was used to calculate the room temperature dielectric constants and led to good agreement with our measurements. Dielectric spectra of neat r-ZCP showed two relaxation peaks attributed to PMMA units, with no additional relaxations present from the zwitterions. Blends of PVDF with r-ZCP were dominated by the αc relaxation associated with the crystalline phase of PVDF, which showed an Arrhenius temperature dependence. Analysis of the conductivity spectra shows a larger DC conductivity in the blends than in either r-ZCP or homopolymer PVDF. Blends show an additional peak in the loss tangent, absent in the copolymer or PVDF attributed to space-charge polarization. Higher DC conductivity and space-charge polarization indicate that the combination of zwitterions and unique microstructure affects charge transport properties.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号