首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2021年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspalathus linearis) and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.75 mM) for 16 hrs. These insulin-resistant liver cells were treated with orientin (10 µM) for 3 h to assess the therapeutic effect of orientin. In addition to assessing the rate of metabolic activity, end point measurements assessed include the uptake or utilization of glucose and palmitate, as well as the expression of genes involved in insulin signaling and regulating cellular energy homeostasis. Our results showed that orientin effectively improved metabolic activity, mainly by maintaining substrate utilization which was marked by enhanced glucose and palmitate uptake by liver cells subjected to insulin resistance. Interestingly, these effects can be explained by the improvement in the expression of genes involved in glucose transport (Glut2), insulin signaling (Irs1 and Pi3k), and energy regulation (Ampk and Cpt1). These preliminary findings lay an important foundation for future research to determine the bioactive properties of orientin against dyslipidemia or insulin resistance in reliable and well-established models of type 2 diabetes.  相似文献   
2.
MshB is the N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-D-glucopyranoside (GlcNAc-Ins) deacetylase active as one of the enzymes involved in the biosynthesis of mycothiol (MSH), a protective low molecular weight thiol present only in Mycobacterium tuberculosis and other actinomycetes. In this study, structural analogues of GlcNAc-Ins in which the inosityl moiety is replaced by a chromophore were synthesized and evaluated as alternate substrates of MshB, with the goal of identifying a compound that would be useful in high-throughput assays of the enzyme. In an unexpected and surprising finding one of the GlcNAc-Ins analogues is shown to undergo a Smiles rearrangement upon MshB-mediated deacetylation, uncovering a free thiol group. We demonstrate that this chemistry can be exploited for the development of the first continuous assay of MshB activity based on the detection of thiol formation by DTNB (Ellman's reagent); such an assay should be ideally suited for the identification of MshB inhibitors by means of high-throughput screens in microplates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号