首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   13篇
晶体学   1篇
数学   1篇
物理学   14篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   5篇
  1998年   1篇
  1997年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Physics of Particles and Nuclei Letters - The problem of spontaneous isotopic symmetry breaking in Nambu–Jona-Lasinio quark models is considered. It is shown that, in models with light...  相似文献   
2.
3.
4.
A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap engenders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be formally treated as positive and negative "capillary charges," which form "capillary multipoles." Here, we derive theoretical expressions for the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is typically much greater than the thermal energy kT. As a consequence, a monolayer from capillary multipoles exhibits considerable shear elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheological properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-assembly of microscopic particles.  相似文献   
5.
A new mechanism of weak chaos in triangular billiards has been proposed owing to the effect of cutting of beams of rays. A similar mechanism is also implemented in other polygonal billiards. Cutting of beams results in the separation of initially close rays at a finite angle by jumps in the process of reflections of beams at the vertices of a billiard. The opposite effect of joining of beams of rays occurs in any triangular billiard along with cutting. It has been shown that the cutting of beams has an absolute character and is independent of the form of a triangular billiard or the parameters of a beam. On the contrary, joining has a relative character and depends on the commensurability of the angles of the triangle with π. Joining always suppresses cutting in triangular billiards whose angles are commensurable with π. For this reason, their dynamics cannot be chaotic. In triangular billiards whose angles are rationally incommensurable with π, cutting always dominates, leading to weak chaos. The revealed properties are confirmed by numerical experiments on the phase portraits of typical triangular billiards.  相似文献   
6.
Contact formation dynamics and electronic perturbations arising from the interaction of a metallic probe and a single molecule (1,3 cyclohexadiene) bound on the Si (100) surface are examined using a series of plane wave, density functional theory calculations. The approach of the probe induces a relaxation of the molecule that ultimately leads to the formation of an interface state due to a specific interaction between the probe apex atom and the C=C bond of the molecule. The calculated interface state is located 0.2 eV above the Fermi energy, in agreement with low temperature scanning tunneling spectroscopy local density of states data (0.35 eV), and is responsible for the contrast observed in low bias empty-state STM images.  相似文献   
7.
Physics of the Solid State - A method of manufacturing double-lattice magnetoplasmonic crystals with the structure (Au/BIG)2, in which the plasmon gold lattices are displaced relative to each other...  相似文献   
8.
B. Naydenov  L. Surnev   《Surface science》1997,370(2-3):155-165
The adsorption of Na on a Ge(100)-(2 × 1) surface has been studied by means of AES, LEED, EELS, TPD and work-function measurements. In the submonolayer coverage region the coverage dependencies of the desorption activation energy E(Θ) and desorption frequency v(Θ) have been determined using the threshold TPD method. Our experimental data show that after the completion of the first Na layer, 3D crystallites develop on the Na/Ge(100) surface (Stranski-Krastanov growth mode). For Θ > 1 ML, formation, followed by decomposition of a certain Na---Ge surface compound occurs in the temperature range 410–550 K.  相似文献   
9.
Due to their long electron spin relaxation times, the endohedral fullerenes N@C60 and P@C60 are good candidates for the implementation of qubits in an electron spin quantum computer. A central operation in this context is the rotation of the spin direction by an arbitrary angle. In the present experiment, this nutation behavior was studied in pulsed electron spin resonance measurements. We show that, even at room temperature, about 50 Rabi oscillations (about 100 qubit operations) can be performed without refocusing the spin system, although inhomogeneities are present. A special feature of the group V endohedral fullerenes is the electron spinS=3/2, which complicates the nutation behavior. The zero-field splitting at low temperature gives rise to different nutation frequencies for the (1/2,?1/2) transition and the (±3/2, ±1/2) transitions. The frequency ratio is 2/31/2.  相似文献   
10.
Precision current measurements are recorded at 5 K during the approach and contact between a Pt-inked probe and the carbon-carbon double-bond region of an isolated 1,3-cyclohexadiene molecule chemisorbed on a Si(100) surface. Scanning tunneling spectroscopic data reveal systematic features in the current at specific probe-molecule separations. Aided by density functional theory calculations, we show that these features arise from interaction forces between the probe and molecule, which can be interpreted as the relaxation of the probe-molecule system prior to and during contact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号