首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10227篇
  免费   491篇
  国内免费   27篇
化学   7153篇
晶体学   84篇
力学   235篇
数学   1336篇
物理学   1937篇
  2023年   83篇
  2022年   56篇
  2021年   134篇
  2020年   181篇
  2019年   159篇
  2018年   192篇
  2017年   175篇
  2016年   389篇
  2015年   314篇
  2014年   324篇
  2013年   673篇
  2012年   669篇
  2011年   775篇
  2010年   389篇
  2009年   347篇
  2008年   699篇
  2007年   680篇
  2006年   582篇
  2005年   527篇
  2004年   402篇
  2003年   370篇
  2002年   353篇
  2001年   251篇
  2000年   244篇
  1999年   156篇
  1998年   117篇
  1997年   106篇
  1996年   146篇
  1995年   101篇
  1994年   95篇
  1993年   110篇
  1992年   93篇
  1991年   61篇
  1990年   60篇
  1989年   47篇
  1988年   45篇
  1987年   38篇
  1986年   34篇
  1985年   77篇
  1984年   75篇
  1983年   49篇
  1982年   48篇
  1981年   37篇
  1980年   38篇
  1979年   20篇
  1978年   32篇
  1977年   23篇
  1976年   13篇
  1975年   25篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
2.
Enantiopure β‐amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4‐carboxy‐2‐oxoazepane α,α‐amino acids to lead to 2′‐oxopiperidine‐containing β2,3,3‐amino acids, upon basic or acid hydrolysis of the 2‐oxoazepane α,α‐amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six‐membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4‐carboxylic acid substituted 2‐oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2‐oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.  相似文献   
3.
4.
Development of biocompatible porous supports is a promising strategy in the field of tissue engineering for the repair and regeneration of bone tissues with severe damage. Graphene oxide aerogels (GOAs) are excellent candidates for the manufacture of these systems due to their porosity, ability to imitate bone structure, and mechanical resistance, and according to their surface chemical reactivity, they can facilitate osseointegration, osteogenesis, osteoinduction and osteoconduction. In this review, synthesis of GOAs from the most primary source is described, and recent studies on the use of these functionalized carbonaceous foams as scaffolding for bone tissue regeneration are presented.  相似文献   
5.
6.
The metallacarborane [3,3′‐Co(1,2‐closo‐C2B9H11)2]? has been synthesized. This species allows the formation of redox couples in which both partners are negatively charged. The E1/2 potential can be tuned by adjusting the nature and number of substituents on B and C. The octaiodinated species [3,3′‐Co(1,2‐closo‐C2B9H7I4)2]? is the most favorable, as it is isolatable and stable in air. A DFT study on stability and redox potentials of complexes has been performed.  相似文献   
7.
8.
Parkinson's disease is a neurodegenerative disorder involving a functional protein, α-synuclein, whose primary function is related to vesicle trafficking. However, α-synuclein is prone to form aggregates, and these inclusions, known as Lewy bodies, are the hallmark of Parkinson's disease. α-synuclein can alter its conformation and acquire aggregating capacity, forming aggregates containing β-sheets. This protein's pathogenic importance is based on its ability to form oligomers that impair synaptic transmission and neuronal function by increasing membrane permeability and altering homeostasis, generating a deleterious effect over cells. First, we establish that oligomers interfere with the mechanical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane, as demonstrated by nanoindentation curves. In contrast, nanoindentation revealed that the α-synuclein monomer's presence leads to a much more resistant lipid bilayer. Moreover, the oligomers’ interaction with cell membranes can promote lactate dehydrogenase (LDH) release, suggesting the activation of cytotoxic events.  相似文献   
9.
A combination of pentafluorophenylboronic acid and oxalic acid catalyses the dehydrative substitution of benzylic alcohols with a second alcohol to form new C−O bonds. This method has been applied to the intermolecular substitution of benzylic alcohols to form symmetrical ethers, intramolecular cyclisations of diols to form aryl-substituted tetrahydrofuran and tetrahydropyran derivatives, and intermolecular crossed-etherification reactions between two different alcohols. Mechanistic control experiments have identified a potential catalytic intermediate formed between the aryl boronic acid and oxalic acid.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号