首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
  国内免费   2篇
化学   51篇
数学   1篇
物理学   9篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
Abstract

Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including wound dressing, tissue engineering scaffolds, and drug delivery. Special emphasis is placed on the fabrication and applications of BC-containing nanofibrous composites for biomedical usage. It summarizes electrospinning of BC-based nanofibers and their surface modification with an outline on challenges and future perspective.  相似文献   
2.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   
3.
4.
This article presents a theoretical study on a number of selected noble gas containing systems of the general formula FNgR and NgR (Ng = He, Ne, Ar, Kr, Xe and R = CH3, CN, CCH, BO, BNH, H, BeO, and AuF). The principal structures, bond energies, spectroscopic, and electronic properties of 28 noble gas containing molecules were investigated using density functional theory at the BMK level. Quantum theory of atoms in molecules, natural bond orbital, and several other analysis methods have been used to provide more insight into the nature of noble gas bonds. Although both F? Ng and Ng? R bonds in the investigated molecules are assigned to have partially covalent and partially electrostatic nature, the covalent character is dominant in Ng? R bonds. In the second part, the intermolecular interactions between FNgR molecules and hydrogen fluoride are overviewed with emphasis on the hydrogen bonding through the fluorine side of noble gas molecule with hydrogen of HF. The calculated interaction energies were found to decrease in magnitude going down the noble gas series. For all noble gases, the strongest hydrogen bond has been observed in the case R=CH3. On the contrary, using R=CN in the FNgR moiety weakens the interaction strength. © 2014 Wiley Periodicals, Inc.  相似文献   
5.

This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g−1. The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L−1, and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples.

A schematic procedure of magnetic solid phase extraction

  相似文献   
6.
This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g?1. The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L?1, and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples. Figure
A schematic procedure of magnetic solid phase extraction  相似文献   
7.
In the present work, substituent effects on cooperativity of S···N chalcogen bonds are studied in XHS···NCHS···4-Z–Py (X = F, Cl; Z = H, F, OH, CH3, NH2, NO2, and CN; and Py = pyridine) complexes using ab initio calculations. An increased attraction or a positive cooperativity is observed on introduction of a third molecule to the XHS···NCHS and NCHS···4-Z–Py binary systems. The shortening of each chalcogen bond distance in the ternary systems is dependent on the substituent Z and is increased in the order Z = NH2 > OH > CH3 > H > F > CN > NO2. The electronic aspects of the complexes are analysed using molecular electrostatic potential, and the parameters derived from the atoms in molecules and natural bond orbital methodologies. According to interaction energy decomposition analysis, the electrostatic energies are important in the interaction energy of S···N bonds and may be regarded as being responsible for the stability of these complexes.  相似文献   
8.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   
9.
This study synthesized bimetallic Fe/Ni nanoparticles and used them for catalytic degradation of profenofos, an organophosphorus pesticide. This novel bimetallic catalyst (Fe/Ni) was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis spectroscopy (EDAX) and X-ray diffraction (XRD). The bimetallic nano-catalyst was prepared at diameters of 20–50 nm and was shown to effectively degrade profenofos. A three-factor central composite design combined with response surface methodology was used to maximize profenofos removal using the bimetallic system. A quadratic model was built to predict degradation efficiency. ANOVA was used to determine the significance of the variables and interactions between them. Good correlation between the experimental and predicted values was confirmed by the high F-value (16.38), very low P-value (<0.0001), non-significant lack of fit, an appropriate coefficient of determination (R2 = 0.936) and adequate precision (14.75). The highest removal rate attained was 94.51%.  相似文献   
10.
The simulation of CZTSSe solar cells is presented in this paper. The simulation results are in reasonable agreement with the experimental data, indicating the reliability of simulation results. New structure is proposed to increase the functionality of the cell. Improved functional performances are achieved by inserting a P-Silicon (P-Si) layer as back surface field. Simulation results suggest that by inserting this P-Si layer, efficiency of the CZTSSe solar cell increases from 12.6% to 16.59%, which is a significant improvement. For the champion cell JSC = 36.27 mA/cm2, VOC = 0.625 V and FF = 73.11% has been achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号