首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
物理学   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.

Background  

The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors.  相似文献   
2.
HARUN REŞIT YAZAR 《Pramana》2013,81(4):579-585
The sd-interacting boson approximation (sd-IBA) and the df-interacting boson approximation (df-IBA) can be related to each other and the states of the interacting boson approximation model can be identified with the fully symmetric states in the sdf interacting boson approximation model. A systematic study of the sdf-IBA model showed that the constructed Hamiltonian can successfully describe the strong octupole correlations in the deformed nuclei. We showed that the interacting boson approximation may account for many of these K π ?=?0+ states. It was found that the calculated energy spectra of the gadolinium isotopes agree quite well with the experimental data. The observed B(E2) values were also calculated and compared with the experimental data.  相似文献   
3.
4.
Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software.  相似文献   
5.
Predicting the log of the partition coefficient P is a long-standing benchmark problem in Quantitative Structure-Activity Relationships (QSAR). In this paper we show that a relatively simple molecular representation (using 14 variables) can be combined with leading edge machine learning algorithms to predict logP on new compounds more accurately than existing benchmark algorithms which use complex molecular representations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号