首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
数学   1篇
  2020年   1篇
  2012年   1篇
  2011年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
2.
Developing large scale deposition techniques to fabricate thin porous films with suitable opto-electro nic properties for water catalysis is a necessity to mitigate climate change and have a sustainable environment.In this review,flame spray pyrolysis(FSP)technique,a rapid and scalable methodology to synthesize nanostructured transitional metal oxide films with designed functionalities,is firstly introduced.Furthermore,applications in electrochemical(EC)and photoelectrochemical(PEC)water splitting for the production of hydrogen fuel is also presented.The high combustion temperature and the aggregation of flame aerosol ensure that the FSP-made films possess high crystallinity,tunable porosity and high surface areas,making this method suitable either as catalysts for EC water splitting or as efficient semiconductor materials for PEC water splitting.Finally,a perspective on the next generation FSP engineered films with potential applications in energy storage and conversion is described.  相似文献   
3.
A solution processed method for fabricating transition metal sulfides on fluorine doped tin oxide (FTO) as efficient counter electrodes in iodine/iodide based solar cells has been demonstrated. Conversion efficiencies of 7.01% and 6.50% were obtained for nickel and cobalt sulfides, respectively, comparable to the conventional thermally platinised FTO electrodes (7.32%). A comparable charge transfer resistance of Ni(3)S(2) and Co(8.4)S(8) to conventional Pt was found to be a key factor for such high efficiencies. Cyclic voltammetry, Kelvin probe microscopy, Electrochemical Impedance Spectroscopy, and Tafel polarization were performed to study the underlying reasons behind such efficient counter electrode performance.  相似文献   
4.
The use of single-walled carbon nanotubes (CNT) thin films to replace conventional fluorine-doped tin oxide (FTO) and both FTO and platinum (Pt) as the counter electrode in dye sensitized solar cells (DSSC) requires surface modification due to high sheet resistance and charge transfer resistance. In this paper, we report a simple, solution-based method of preparing FTO-free counter electrodes based on metal (Pt) or metal sulfide (Co(8.4)S(8), Ni(3)S(2)) nanoparticles/CNT composite films to improve device performance. Based on electrochemical studies, the relative catalytic activity of the composite films was Pt > Co(8.4)S(8) > Ni(3)S(2). We achieved a maximum efficiency of 3.76% for the device with an FTO-free counter electrode (Pt/CNT). The device with an FTO- and Pt-free (CoS/CNT) counter electrode gives 3.13% efficiency.  相似文献   
5.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号