首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   6篇
  国内免费   2篇
化学   44篇
晶体学   1篇
力学   3篇
数学   1篇
物理学   8篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  1954年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
The title complex, di‐μ‐chloro‐bis­[chloro­(η6p‐cymene)ruthenium(II)]–9H‐carbazole (1/2), [Ru2Cl4(C10H14)2]·2C12H9N, is composed of one [RuCl26p‐cymene)]2 and two 9H‐carbazole mol­ecules. There are one‐half of a dinuclear complex and one 9H‐carbazole mol­ecule per asymmetric unit. In the dinuclear complex, each of the two crystallographically equivalent Ru atoms is in a pseudo‐tetra­hedral environment, coordinated by a terminal Cl atom, two bridging Cl atoms and the aromatic hydro­carbon, which is linked in a η6 manner; the Ru⋯Ru separation is 3.688 (3) Å. The title complex has a crystallographic centre of symmetry located at the mid‐point of the Ru⋯Ru line. Inter­molecular N—H⋯Cl and π–π stacking inter­actions are observed. These inter­actions form a four‐pointed star‐shaped ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [100] direction, which stabilize the crystal packing.  相似文献   
2.
The molecule of the title compound, C18H24N2O2, resides on a crystallographic inversion centre. The mol­ecule adopts a transoid conformation with respect to the central C—C single bond and is in the meso form. A polarimetric study of the compound did not show any optical activity, indicating that the compound is a racemic mixture entirely consistent with the centrosymmetric space group. In the mol­ecule, there is one intra­molecular N—H⋯O inter­action, resulting in the formation of a five‐membered ring. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O inter­actions are also observed. These inter­actions form an R22(9) ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [010] direction, which stabilize the crystal packing.  相似文献   
3.
4.
5.
The Schiff base compound (E)-N-{2-[(2-hydroxybenzylidene)amino]phenyl}benzenesulfonamide has been synthesized and characterized by IR, NMR and Uv-vis spectroscopies, and single-crystal X-ray diffraction technique. In addition, quantum chemical calculations employing density functional theory (DFT) method with the 6–311++G(d,p) basis set were performed to study the molecular, spectroscopic and some electronic structure properties of the title compound, and the results were compared with the experimental findings. There exists a good correlation between experimental and theoretical data. Enol-imine/keto-amine tautomerization mechanism was investigated in the gas phase and in solution phase using the polarizable continuum model (PCM) approximation. The energetic and thermodynamic parameters of the enol-imine?→?keto-amine transfer process show that the single proton exchange is thermodynamically unfavored both in the gas phase and in solution phase. However, the reverse reaction seems to be feasible with a low barrier height and is supported by negative values in enthalpy and free energy changes both in the gas phase and in solution phase. The solvent effect is found to be sizable with increasing polarity of the solvents for the reverse reaction. The predicted nonlinear optical properties of the compound are found to be much greater than those of urea.  相似文献   
6.
In this study, the ion-imprinting method has been integrated to develop a novel composite material for the selective separation of Pb2+ ions. Also, Pb2+ ion binding ability of the organosmectite based inorganic-organic composite incorporation of bicyclic C18 organic compound into smectite layers was conducted to draw a projection its potential use as a solid phase exchanger which is quite selective toward Pb2+ ions. The ion-imprinted nanocomposites were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), swelling tests, and elemental analyses. After that, maximum binding capacity, pH, and equilibrium binding time were also been optimized. In order to show the selectivity of the composite synthesized, non-imprinted composites were also synthesized in absence of Pb2+ ions during polymerization. In this step, Ni2+, Co2+, Al3+, Zn2+, and Cu2+ ions were used as competitors under batch adsorption conditions. The relative selectivity coefficients of imprinted composite were calculated as 28.5, 156.5, 69.3, 24.8 and 131.6 for Pb2+/Co2+, Pb2+/Cu2+, Pb2+/Al3+, Pb2+/Zn2+, Pb2+/Ni2+ binary solutions, respectively. Finally, reusability of the composites was evaluated to show its cost-efficiency by repeating adsorption-desorption experiments ten-times. The adsorption capacity of the imprinted composites did not change significantly whereas that of non-imprinted version reduced dramatically.  相似文献   
7.
The title compound, [Zn(C15H11N7O4)(H2O)2](NO3)(PF6)·3H2O, contains a mononuclear zinc(II) complex. The Zn2+ centre is seven‐coordinated in a slightly distorted penta­gonal–bipyramidal geometry, with the two water O atoms located in the apical positions, and the pyridine N atom, the two imine N atoms and two carbonyl O atoms of the uracil groups located in the equatorial plane. The charge is balanced by PF6 and NO3 anions.  相似文献   
8.
The title compound, [RuCl2(C25H29N5)(C18H15P)], a transfer hydrogenation catalyst, is supported by an N,N′,N′′‐tridentate pyridine‐bridged ligand and triphenylphosphine. The RuII centre is six‐coordinated in a distorted octahedral arrangement, with the two Cl atoms located in the axial positions, and the pyridine (py) N atom, the two imino N atoms and the triphenylphosphine P atom located in the equatorial plane. The two equatorial Ru—Nimino distances (mean 2.093 Å) are substantially longer than the equatorial Ru—Npy bond [1.954 (4) Å]. It is observed that the NiminoM—Npy bond angle for the five‐membered chelate rings of 2,6‐bis(imino)pyridine‐based complexes is inversely related to the magnitude of the M—Npy bond. The title structure is stabilized by intra‐ and intermolecular C—H...Cl hydrogen bonds, as well as by intramolecular π–π stacking interactions between the aromatic rings belonging to the triphenylphosphine ligand and the dimethylaminophenyl fragment. The intermolecular hydrogen bonds form an R22(12) ring and a zigzag chain of fused centrosymmetric rings running parallel to the [100] direction.  相似文献   
9.
The novel mesoporous silica‐supported bis(diazo‐azomethine) compounds have been synthesized and characterized successively. In the first step, 1,3‐phenylenedimethanamine and 4,4′‐diaminodiphenylmethane were diazotized, and the obtained bis(diazonium) cations were coupled with 2,4‐dihydroxybenzaldehyde. The synthesized bis(diazo‐carbonyl) compounds, 5,5′‐((1,3‐phenylenebis(methylene))bis(diazene‐2,1‐diyl))bis(2,4‐dihydroxybenzaldehyde) (A1) and 5,5′‐((methylenebis(4,1‐phenylene))bis(diazene‐2,1‐diyl))bis(2,4‐dihydroxybenzaldehyde) (A2) were chemically supported on amino‐modified silica‐gel (as L1 and L2). Elemental analysis, liquid chromatography‐mass spectroscopy, liquid‐phase NMR (1H and 13C) and solid‐phase NMR (CP‐MAS 29Si and 13C), FT‐IR, TG/DTA, scanning electron microscopy and energy‐dispersive X‐ray spectroscopy techniques were used for characterizations of all the synthesized compounds. The syringe and batch techniques were applied for the solid‐phase extraction properties of Pb(II), Cu(II), Cd(II) and Cr(III) ions using an inductively coupled plasma‐atomic emission spectroscopy instrument. The recoveries of Pb(II), Cu(II), Cd(II) and Cr(III) ions have been achieved to 95–99% with the (RSDs) of ± 2–3% in optimum conditions.  相似文献   
10.
As foaming appears as a problem in chemical and fermentation processes that inhibits reactor performance, the eminence of a novel fluorocarbon-hydrocarbon unsymmetrical bolaform (FHUB: OH(CH2)11N+(C2H4)2(CH2)2(CF2)5CF3 I-) surfactant as an antifoaming agent as well as a foam-reducing agent was investigated and compared with other surfactants and a commercial antifoaming agent. The surface elasticity of FHUB was determined as 4 mN/m, indicating its high potential on thinning of the foam film. The interactions between FHUB and the microoganism were investigated in a model fermentation process related with an enzyme production by recombinant Escherichia coli, in V = 3.0 dm3 bioreactor systems with V(R) = 1.65 dm3 working volume at air inlet rate of Q(o)/V(R) = 0.5 dm3 dm(-3) min(-1) and agitation rate of N = 500 min(-1) oxygen transfer conditions, at T = 37 degrees C, pH(o) = 7.2, and C(FHUB) = 0 and 0.1 mM, in a glucose-based defined medium. As FHUB did not influence the metabolism, specific enzyme activity values obtained with and without FHUB were close to each other; however, because of the slight decrease in oxygen transfer coefficient, slightly lower volumetric enzyme activity and cell concentrations were obtained. However, when FHUB is compared with widely used silicon oil based Antifoam A, with the use of the FHUB, higher physical oxygen transfer coefficient (K(L)a) values are obtained. Moreover, as the amount required for the foam control is very low, minute changes in the working volume of the bioreactor were obtained indicating the high potential of the use of FHUB as an antifoaming agent as well as a foam-reducing agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号