首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   7篇
力学   1篇
物理学   6篇
  2013年   1篇
  2011年   1篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2002年   2篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有14条查询结果,搜索用时 218 毫秒
1.
2.
Transition-metal oxide clusters of the form M(n)O(m) (+)(M=V,Nb,Ta) are produced by laser vaporization in a pulsed nozzle cluster source and detected with time-of-flight mass spectrometry. Consistent with earlier work, cluster oxides for each value of n produce only a limited number of stoichiometries, where m>n. The cluster cations are mass selected and photodissociated using the second (532 nm) or third (355 nm) harmonic of a Nd:YAG (yttrium aluminum garnet) laser. All of these clusters require multiphoton conditions for dissociation, consistent with their expected strong bonding. Dissociation occurs by either elimination of oxygen or by fission, repeatedly producing clusters having the same specific stoichiometries. In oxygen elimination, vanadium species tend to lose units of O(2), whereas niobium and tantalum lose O atoms. For each metal increment n, oxygen elimination proceeds until a terminal stoichiometry is reached. Clusters having this stoichiometry do not eliminate more oxygen, but rather undergo fission, producing smaller M(n)O(m) (+) species. The smaller clusters produced as fission products represent the corresponding terminal stoichiometries for those smaller n values. The terminal stoichiometries identified are the same for V, Nb, and Ta oxide cluster cations. This behavior suggests that these clusters have stable bonding networks at their core, but additional excess oxygen at their periphery. These combined results determine that M(2)O(4) (+), M(3)O(7) (+), M(4)O(9) (+), M(5)O(12) (+), M(6)O(14) (+), and M(7)O(17) (+) have the greatest stability for V, Nb, and Ta oxide clusters.  相似文献   
3.
Vibronic optical emissions from CS(A1pi --> X1sigma+) and CS(a3pi --> X1sigma+) transitions have been identified from dissociative recombination (DR) of CS2(+) and HCS2(+) plasmas. All of the spectra were taken in flowing afterglow plasmas using an optical monochromator in the UV-visible wavelength region of 180-800 nm. For the CS(A --> X) and CS(a --> X) emissions, the relative vibrational distributions have been calculated for v' < 5 and v' < 3 in both types of plasmas for the CS(A) and CS(a) states, respectively. Both recombining plasmas show a population inversion from the v' = 0 to v' = 1 level of the CS(A) state, similar to other observations of the CS(A) state populations, which were generated using two other energetic processes. The possibility of spectroscopic cascading is addressed, such that transitions from upper level electronic states into the CS(A) and CS(a) states would affect the relative vibrational distribution, and there is no spectroscopic evidence supporting the cascading effect. Additionally, excited-state transitions from neutral sulfur (S(5S(2)0 --> 3P(2)) and S(5S(2)0 --> 3P(1))) and the products of ion-molecule reactions (CS(B1sigma+ --> A1pi), CS(+)(B2sigma+ --> A2pi(i)), and CS2(+) (A2pi(u) --> X2pi(g))) have been observed and are discussed.  相似文献   
4.
A structural failure problem was solved using an integrated and iterative program of testing and analysis. The steps taken in solving the problem were: analytical calculations; operational testing; qualifications of analytical results; problem identification; design of corrective action; and confirmatory testing.  相似文献   
5.
A technique has been developed to simultaneously determine recombination rate coefficients, alpha e, and initial concentrations of ion types that coexist in a flowing afterglow plasma. This was tested using the H3(+) + allene reaction in which two different C3H3+ isomers are produced. Use of an electrostatic Langmuir probe enabled the C3H3+ isomer branching ratios for propargyl and cyclic C3H3+ from this allene reaction and their alpha e to be determined over the temperature range 172-489 K. The study showed that the cyclic C3H3+ to propargyl C3H3+ branching ratios from the allene reaction varied from 50/50 at 172 K to 18/82 at 489 K. Over this temperature range, the alpha e for both isomers change only slightly. The room temperature alpha e values for propargyl and cyclic C3H3+ are (1.15 +/- 0.2) x 10(-7) and (8.00 +/- 0.1) x 10(-7) cm3/s, respectively. The data are discussed relative to current theories and in relation to fuel-rich flame chemistry, interstellar molecular synthesis, and modeling of Titan's atmosphere.  相似文献   
6.
Iron oxide cluster cations, Fe(n)O(m)(+), are produced by laser vaporization in a pulsed nozzle cluster source and detected with time-of-flight mass spectrometry. The mass spectrum exhibits a limited number of stoichiometries for each value of n, where m > or = n. The cluster cations are mass selected and photodissociated using the second (532 nm) or third (355 nm) harmonic of a Nd:YAG laser. At either wavelength, multiple photon absorption is required to dissociate these clusters, which is consistent with their expected strong bonding. Cluster dissociation occurs via elimination of molecular oxygen, or by fission processes producing stable cation species. For clusters with n < 6, oxygen elimination proceeds until a terminal stoichiometry of n = m is reached. Clusters with this 1:1 stoichiometry do not eliminate oxygen, but rather undergo fission, producing smaller (FeO)n(+) species. The decomposition of larger clusters produces a variety of product cations, but those with the 1:1 stoichiometry are always the most prominent and these same species are produced repeatedly from different parent ions. These combined results establish that species of the form (FeO)n(+) have the greatest stability throughout these small iron oxide clusters.  相似文献   
7.
Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein's activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.  相似文献   
8.
SJ Levett  CD Dewhurst  DMcK Paul 《Pramana》2002,58(5-6):913-917
We have performed extensive small-angle neutron scattering (SANS) diffraction studies of the vortex lattice in single crystal YNi2B2C for B‖c. High-resolution SANS, combined with a field-oscillation vortex lattice preparation technique, allows us to separate Bragg scattered intensities from two orthogonal domains and accurately determine the unit cell angle, β. The data suggest that upon increasing field there is a finite transition width where both low- and high-field distorted hexagonal vortex lattice phases, mutually rotated by 45°, coexist. The smooth variation of diffracted intensity from each phase through the transition corresponds to a redistribution of populations between the two types of domains.  相似文献   
9.
Chromium oxide cluster cations, Cr(n)O(m)+, are produced by laser vaporization in a pulsed nozzle cluster source and detected with time-of-flight mass spectrometry. The mass spectrum exhibits a limited number of stoichiometries for each value of n, where m > n. The cluster cations are mass selected and photodissociated using the second (532 nm) or third (355 nm) harmonic output of a Nd:YAG laser. At either wavelength, multiphoton absorption is required to dissociate these clusters, which is consistent with their expected strong bonding. Cluster dissociation occurs via elimination of molecular oxygen, or by fission processes producing stable cation species and/or eliminating stable neutrals such as CrO3, Cr(2)O(5), or Cr(4)O(10). Specific cation clusters identified to be stable because they are produced repeatedly in the decomposition of larger clusters include Cr(2)O(4)+, Cr(3)O(6)+, Cr(3)O(7)+, Cr(4)O(9)+, and Cr(4)O(10)+.  相似文献   
10.
A remeasurement of the product distribution from dissociative electron-ion recombination (DR) of N2H+ has been made using a new technique. The technique employs electron impact to ionize the neutral products prior to detection by a quadrupole mass analyzer. Two experimental approaches, both using pulsed gas techniques, isolate and quantify the DR products. In one approach, an electron-attaching gas is pulsed into a flowing afterglow to transiently quench DR. Results from this approach give an upper limit of 5% for the NH+N product channel. In the second approach, the reagent gas N2 is pulsed. The absolute percentages of products were monitored versus initial N2 concentration. Results from this approach also give an upper limit of 5% for NH+N production. This establishes that N2+H is the dominant channel, being at least between 95 and 100%, and that there is no significant NH production contrary to a recent storage ring measurement that yielded 64% NH+N and 36% N2+H. Possible reasons for this dramatic difference are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号