首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
化学   28篇
数学   2篇
物理学   3篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2016年   2篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有33条查询结果,搜索用时 625 毫秒
1.
The reaction of a copper(I) complex with a sterically demanding secondary diamine ligand and O2 yields a tris(mu-hydroxy)tricopper(II) complex. This complex is a structural model of the proposed native intermediate in multicopper oxidases, with interesting structural, magnetic, and solution properties.  相似文献   
2.
3.
A two-dimensional steady-sate analysis of semi-infinite brittlecrack growth at a constant subcritical rate in an unboundedfully-coupled thermoelastic solid under mixed-mode thermomechanicalloading is made. The loading consists of normal and shear tractionsand heat fluxes applied as point sources (line loads in theout-of-plane direction). A related problem is solved exactly in an integral transformspace, and robust asymptotic forms used to reduce the originalproblem to a set of integral equations. The equations are partiallycoupled and exhibit operators of both Cauchy and Abel types,yet can be solved analytically. The temperature change field at a distance from the moving crackedge is then constructed, and its dominant term is found tobe controlled by the imposed heat fluxes. The role of this termis, indeed, enhanced if the heat fluxes serve to render thecrack as a net heat source/sink for the solid, as opposed tobeing a transmitter of heat across its plane. More generally,the influence of the thermoelastic coupling on this field, aswell as other functions, is found to increase with crack speed.  相似文献   
4.
The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the hydrophobic effect in this representative system of protein and ligand: hydrophobic interactions, here, seem to comprise approximately equal contributions from enthalpy (plausibly from strengthening networks of hydrogen bonds among molecules of water) and entropy (from release of water from configurationally restricted positions).  相似文献   
5.
Multicopper oxidases catalyze the 4e- reduction of O2 to H2O. Reaction of the fully reduced enzyme with O2 produces the native intermediate (NI) that consists of four oxidized Cu centers, three of which form a trinuclear cluster site, all bridged by the product of full O2 reduction. The most characteristic feature of NI is the intense magnetic circular dichroism pseudo-A feature (a pair of temperature-dependent C-terms with opposite signs) associated with O --> Cu(II) ligand-to-metal charge transfer (LMCT) that derives from the strong Cu-O bonds in the trinuclear site. In this study, the two most plausible Cu-O structures of the trinuclear site, the tris-mu2-hydroxy-bridged and the mu3-oxo-bridged structures, are evaluated through spectroscopic and electronic structure studies on relevant model complexes, TrisOH and mu3O. It is found that the two components of a pseudo-A-term for TrisOH are associated with LMCT to the same Cu that are coupled by a metal-centered excited-state spin-orbit coupling (SOC), whereas for mu3O they are associated with LMCT to different Cu centers that are coupled by oxo-centered excited state SOC. Based on this analysis of the two candidate models, only the mu3-oxo-bridged structure is consistent with the spectroscopic properties of NI. The Cu-O sigma-bonds in the mu3-oxo-bridged structure would provide the thermodynamic driving force for the 4e- reduction of O2 and would allow the facile electron transfer to all Cu centers in the trinuclear cluster that is consistent with its involvement in the catalytic cycle.  相似文献   
6.
Owing to high modularity and synthetic tunability, metal–organic frameworks (MOFs) on textiles are poised to contribute to the development of state-of-the-art wearable systems with multifunctional performance. While these composite materials have demonstrated promising functions in sensing, filtration, detoxification, and biomedicine, their applicability in multifunctional systems is only beginning to materialize. This review highlights the multifunctionality and versatility of MOF-integrated textile systems. It summarizes the operational goals of MOF@textile composites, encompassing sensing, filtration, detoxification, drug delivery, UV protection, and photocatalysis. Building upon these recent advances, this review concludes with an outlook on emerging opportunities for the diverse applications of MOF@textile systems in the realm of smart wearables.  相似文献   
7.
Stimuli-responsive temporary adhesives constitute a rapidly developing class of materials defined by the modulation of adhesion upon exposure to an external stimulus or stimuli. Engineering these materials to shift between two characteristic properties, strong adhesion and facile debonding, can be achieved through design strategies that target molecular functionalities. This perspective reviews the recent design and development of these materials, with a focus on the different stimuli that may initiate debonding. These stimuli include UV light, thermal energy, chemical triggers, and other potential triggers, such as mechanical force, sublimation, electromagnetism. The conclusion discusses the fundamental value of systematic investigations of the structure–property relationships within these materials and opportunities for unlocking novel functionalities in future versions of adhesives.

Stimuli-responsive temporary adhesives emerge as next-generation multifunctional materials with advantages that include strong temporary adhesion, debonding on demand, and tunable reactivity.  相似文献   
8.
The activation of dioxygen (O(2)) by Cu(I) complexes is an important process in biological systems and industrial applications. In tyrosinase, a binuclear copper enzyme, a mu-eta(2):eta(2)-peroxodicopper(II) species is accepted generally to be the active oxidant. Reported here is the characterization and reactivity of a mu-eta(2):eta(2)-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the secondary diamine ligand N,N'-di-tert-butyl-ethylenediamine (DBED), [(DBED)Cu(MeCN)](X) (1.X, X = CF(3)SO(3)(-), CH(3)SO(3)(-), SbF(6)(-), BF(4)(-)), with O(2) at 193 K to give [[Cu(DBED)](2)(O(2))](X)(2) (2.X(2)). The UV-vis and resonance Raman spectroscopic features of 2 vary with the counteranion employed yet are invariant with change of solvent. These results implicate an intimate interaction of the counteranions with the Cu(2)O(2) core. Such interactions are supported further by extended X-ray absorption fine structure (EXAFS) analyses of solutions that reveal weak copper-counteranion interactions. The accessibility of the Cu(2)O(2) core to exogenous ligands such as these counteranions is manifest further in the reactivity of 2 with externally added substrates. Most notable is the hydroxylation reactivity with phenolates to give catechol and quinone products. Thus the strategy of using simple bidentate ligands at low temperatures provides not only spectroscopic models of tyrosinase but also functional models.  相似文献   
9.
The magnetic and electronic properties of a spin-frustrated ground state of an antiferromagnetically coupled 3-fold symmetric trinuclear copper complex (TrisOH) is investigated using a combination of variable-temperature variable-field magnetic circular dichroism (VTVH MCD) and powder/single-crystal EPR. Direct evidence for a low-lying excited S = (1)/(2) state from the zero-field split ground (2)E state is provided by the nonlinear dependence of the MCD intensity on 1/T and the nesting of the VTVH MCD isotherms. A consistent zero-field splitting (Delta) value of approximately 65 cm(-1) is obtained from both approaches. In addition, the strong angular dependence of the single-crystal EPR spectrum, with effective g-values from 2.32 down to an unprecedented 1.2, requires in-state spin-orbit coupling of the (2)E state via antisymmetric exchange. The observable EPR intensities also require lowering of the symmetry of the trimer structure, likely reflecting a magnetic Jahn-Teller effect. Thus, the Delta of the ground (2)E state is shown to be governed by the competing effects of antisymmetric exchange (G = 36.0 +/- 0.8 cm(-1)) and symmetry lowering (delta = 17.5 +/- 5.0 cm(-1)). G and delta have opposite effects on the spin distribution over the three metal sites where the former tends to delocalize and the latter tends to localize the spin of the S(tot) = (1)/(2) ground state on one metal center. The combined effects lead to partial delocalization, reflected by the observed EPR parallel hyperfine splitting of 74 x 10(-4) cm(-1). The origin of the large G value derives from the efficient superexchange pathway available between the ground d(x2-y2) and excited d(xy) orbitals of adjacent Cu sites, via strong sigma-type bonds with the in-plane p-orbitals of the bridging hydroxy ligands. This study provides significant insight into the orbital origin of the spin Hamiltonian parameters of a spin-frustrated ground state of a trigonal copper cluster.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号