首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   18篇
数学   1篇
物理学   1篇
  2021年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2012年   1篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2000年   2篇
  1999年   2篇
排序方式: 共有20条查询结果,搜索用时 272 毫秒
1.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   
2.
The title compound, alternatively sodium pyridin‐2‐olate trihydrate, Na+·C5H3N2O3?·3H2O, crystallizes in the P space group. It is made up of edge‐shared chains of NaO6 octahedra with five water mol­ecules and one 5‐nitro‐2‐pyridonate anion. Four of these water mol­ecules are bicoordinating, involved in connecting the adjacent octahedra, and the fifth is coordinated to only one octahedron. The crystal structure is stabilized by a network of strong O—H?O and O—H?N interactions. The organic moieties occupy the space between the chains with an antiparallel alignment.  相似文献   
3.
4.
The present study was carried out to understand the effect of cortisol on caspase expression in the C2C12 and 3 T3-L1 cells under co-culture system. Cells were co-cultured by using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3 T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3 T3-L1 cells were transferred to C2C12 plates and inserts containing C2C12 cells were transferred to 3 T3-L1 plates. A total of 10 μg/μl of cortisol was added to the medium. Following treatment of cortisol for 3 days, the cells in the lower well were harvested for analysis. Caspases such as caspase 3, caspase 7, and caspase 9 were selected for the analysis. qRT-PCR results indicated the significant increase in the mRNA expression of caspase 3, caspase 7, and caspase 9. Caspase 3, 7, and 9 activities were also increased in the mono- and co-cultured C2C12 and 3 T3-L1 cells. In addition, confocal microscopical investigation indicated that cortisol increases caspase expressions in the mono- and co-cultured C2C12 and 3 T3-L1 cells. Taking all these together, we concluded that the co-culture system reflects the exact effect of cortisol on caspase expression, which is quite distinct from one dimensional mono-cultured experiments.  相似文献   
5.
We have investigated the electrocatalytic dehalogenation of beta-methylallyl chloride (beta-mAC), widely used in the polymer industry, using [Co(I)(bpy)3]+ (where bpy=2,2'-bipyridine) electrochemically generated in situ from [Co(II)(bpy)3]2+ at a glassy carbon electrode in the presence of three different cationic surfactants in aqueous solution. Cetyltrimethylammonium bromide (CTAB), tetradecyltrimethylammonium bromide (TDTAB), and cetylbenzyldimethylammonium chloride (CBDAC) were employed in the present investigation. The [Co(II)(bpy)3]2+-cationic surfactant systems show excellent electrocatalytic activity toward dehalogenation of beta-mAC. The dependence of the catalytic current, the corresponding potential, and the current function on the potential scan rate has been analyzed to assess the nature of the catalytic reaction. The second-order rate constant, kchem, for the reaction between the beta-mAC substrate and the electrogenerated-micelle stabilized-Co(I) complex has been calculated by a cyclic voltammetry technique. The reduction products after 3 h of bulk electrolysis have been identified by GC/MS to be one nonchloro compound (2-methyl-1,5-hexadiene (IV)) and two chloro compounds (1-chloro-2,5-dimethyl-2,5-hexadiene (V) and spiro[1.2]cylopropyl-6-chloro-5-methyl-hex-4-ene (VI)). Based on the electrochemical results and the mass spectral data, a reaction scheme involving all the reduction products has been proposed. Finally, a good correlation between the catalytic efficiency and the structural features of the surfactant molecules is demonstrated. The present study emphasizes the need for further optimization work to achieve maximum yield of nonchloro compound (IV) to employ the present [Co(II)(bpy)3]2+-cationic surfactant systems with a high catalytic efficiency as promising for possible applications.  相似文献   
6.
Thermostable xylanase isoforms T70 and T90 were purified and characterized from the xerophytic Opuntia vulgaris plant species. The enzyme was purified to homogeneity employing three consecutive steps. The purified T70 and T90 isoforms yielded a final specific activity 134.0 and 150.8 U mg?1 protein, respectively. The molecular mass of these isoforms was determined to be 27 kDa. The optimum pH for the T70 and T90 xylanase isoforms was 5.0 and the temperature for optimal activity was 70 and 90 °C, respectively. The Km value of T70 and T90 enzyme isoforms was 3.49, 2.1 mg ml?1, respectively when oat spelt xylan was used as a substrate. The T70 had a Vmax of 10.4 μmol min?1 mg?1, and T90 had a Vmax of 8.9 μmol min?1 mg?1, respectively. In the presence of 10 mM Co2+, and Mn2+ the activity of T70 and T90 isoforms increased, where as 90 % inhibition was noted with of the use 10 mM Hg2+, Cd2+, Cu2+, Zn2+ while partial inhibition was observed in the presence of Fe3+, Ni2+, Ca2+and Mg2+. The T70 and T90 isoforms retained nearly 50 % activity in the presence of 2.0 M urea, while use of 40 mM SDS lowered the activity nearly 38–41 %. The substrate specificity of both T70 and T90 isoforms showed maximum activity for oat spelt xylan. Western blot, immunodiffusion, and in vitro inhibition assays confirmed reactivity of the T90 isoform with polyclonal anti-T90 antibody raised in rabbit, as well as cross-reactivity of the antibody with the T70 xylanase isoform.  相似文献   
7.
This work describes the development and application of an electrochemical cell specifically designed for disposable screen printed carbon electrodes (SPCE) suitable for simultaneous electrochemiluminescence (ECL) and amperometric detection in sequential injection analysis. The flow system with facility for photomultiplier tube via a fiber optic facing the SPCE is user‐friendly and makes the detection process very easy to operate. Instead of the need to constant deliver the chemiluminescence (CL) reagents to the reaction zone, sequential injection analysis allows a considerable reduction in the consumption of the sample and expensive CL reagents (such as Ru(bpy) salts). The utility of the analyzer was demonstrated for the detection of oxalate based on the ECL reaction with Ru(bpy) . Under optimized conditions, in the presence of 100 μM Ru(bpy) , the linear ranges of peak current and ECL light intensity for oxalate distinctly varied from 10 μM to 5 mM and 0.1 μM to 100 μM, respectively. In other words, the linear detection can be covered over a four‐order range with the combination of these two signals.  相似文献   
8.
This article reports direct electrocatalytic oxidation of cysteine (CySH) and cystine (CyS‐SCy) at an inexpensive Nafion/lead oxide‐manganese oxide combined catalyst in physiological pH. The synthesized lead oxide‐manganese oxide material is simply mixed with Nafion in the form of cast solution and modified on a disposable screen‐printed carbon electrode (designated as SPE/Nf‐PMO) for biosensing application. Electrochemical study with a standard redox couple of quinone/hydroquinone demonstrates an enhanced current response at the combined catalyst compared to its individual component. Surface characterization further provides information regarding the structural morphology of the catalyst to its catalytic performance. Direct electrocatalytic oxidation signals are observed at +0.75 and +1.20 V vs. Ag/AgCl for cysteine and cystine, respectively, at the SPE/Nf‐PMO. To extend the applicability, we further apply the proposed system for the detection of cysteine and cystine by flow injection analysis (FIA). Under optimized conditions, the detection limit (S/N=3) is 0.43 μM and 0.33 μM for cysteine and cystine, respectively.  相似文献   
9.
10.
Studies on strontium substituted rare earth manganites   总被引:3,自引:0,他引:3  
Sintering, electrical conductivity and thermal expansion behaviour of combustion synthesised strontium substituted rare earth manganites with the general formula Ln1−xSrxMnO3 (Ln=Pr, Nd and Sm; x=0, 0.16 and 0.25) have been investigated as solid oxide fuel cell cathode materials. The combustion derived rare earth manganites have surface area in the range of 13–40 m2/g. Strontium substitution increases the electrical conductivity values in all the rare earth manganites. With the decreasing ionic radii of rare earth ions, the conductivity value decreases. Among the rare earth manganites studied, (Pr/Nd)0.75Sr0.25MnO3 show high electrical conductivity (>100 S/cm). The thermal expansion coefficients of Pr0.75Sr0.25MnO3 and Nd0.75Sr0.25MnO3 were found to be 10.2×10−6 and 10.7×10−6 K−1 respectively, which is very close to that of the electrolyte (YSZ) used in solid oxide fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号