首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
物理学   2篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
Green synthesis of nanoparticles by eco-friendly methods is a recent technique which draws the attention of researchers because of the reward over many conventional chemical methods. The present work focuses on aqueous Limonia acidissima leaf extract in synthesizing silver nanoparticles and its applications in a simple way. The silver nanoparticles formed were characterized by Infrared, Ultra violet-visible, X-ray diffraction, transmission electron microscopic, and atomic force microscopic techniques. The powder X-ray diffraction studies and transmission electron microscopic images reveal that the silver nanoparticles synthesized were approximately 10–40 nm and have a spherical structure. The nanoparticles were assayed for their antibacterial, antifungal and antioxidant activity. The antimicrobial studies for the silver nanoparticles show a maximum zone of inhibition of 8.8 mm for Bacillus subtilis bacteria and 8.5 mm for Candida albicans fungi at 3 and 1 μg/mL respectively. In-silico ADMET studies reveal that the toxicity, bioactivity, pharmacokinetics and drug-likeness properties of Limonia acidissima leaf extract is good. The molecular docking studies show that the microbial activity is high for Bacillus subtilis and Candida albicans showing the coincidence of the in silico and in vitro studies as expected. The free radical scavenging activity of nanoparticles is 80 for 100 μg/mL. The 50% of inhibition of silver nanoparticles against human breast cancer cell lines is 18 μg/mL. It is evident that silver nanoparticles would be helpful in treating cancer cell lines and have great perspectives in the biomedical sector.  相似文献   
2.
Research on Chemical Intermediates - Highly efficient nanocomposites (Ag/HHP and Ru/HHP) of Ag and Ru nanoparticles (NPs) supported on human hair powder (HHP) were prepared for reduction of...  相似文献   
3.
4.
The inhibitive action of Clematis gouriana (CG) on mild steel (MS) corrosion in 1.0 M HCl solution was studied. Inhibition efficiency of CG was carried out by using various weight loss methods, potentiodynamic polarisation, and electrochemical impedance spectroscopy. Inhibition efficiencies of up to 95.70% for CG can be obtained. Adsorption of CG on the MS surface was found to obey the Langmuir adsorption isotherm. Free energy of adsorption calculated from the temperature studies revealed the possibility of both chemisorptions and physisorption. The adsorbed film on the MS surface containing the CG inhibitor was also characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope and energy-dispersive spectrum. The possible active ingredient responsible for the anticorrosion effect is identified as aporphine alkaloid which is isolated and screened for the anticorrosion effect using electrochemical studies. The possible mode of corrosion inhibition of aporphine alkaloid is also derived using FTIR studies.  相似文献   
5.
6.
The corrosion inhibitive effect of 3-(3-oxo-3-phenyl-propenyl)-1H-quinolin-2-one (PPQ) and 3-(3-oxo-3-phenyl-propenyl)-1H-benzoquinolin-2-one (PPBQ) on high carbon steel (HCS) in 10 % HCl media was evaluated by chemical (weight loss) and electrochemical (electrochemical impedance spectroscopy and potentiodynamic polarization technique) measurements. The inhibition efficiencies obtained from weight loss and electrochemical measurements were in good agreement. The inhibition efficiency was found to increase with the increase in inhibitor concentration but decreased with rise in temperature. Potentiodynamic polarization studies revealed the mixed mode inhibition of inhibitors. The adsorption behavior of these inhibitors on the HCS surface was found to obey the Langmuir adsorption isotherm. The thermodynamic parameter values of free energy of adsorption (?G ads) and enthalpy of adsorption (?H ads) revealed that the inhibitor was adsorbed on the HCS surface via both chemisorption and physisorption mechanisms. The adsorption mechanism of inhibition was supported by spectroscopic techniques (UV–visible, FT-IR, and wide-angle X-ray diffraction), surface analysis (SEM–EDS), and adsorption isotherms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号