首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学   11篇
数学   3篇
物理学   14篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1976年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
2.
3.
Landscape analysis has been identified as a promising way to develop efficient optimization methods. Nevertheless, the links between properties of the landscape and efficiency of methods is not easy to understand. In this article, we propose to give a contribution in this field using a vehicle routing problem as an illustration. Metaheuristics use a neighborhood operator that connects solutions of the search space. Thus, this operator acts on the dynamics of the search and impacts metaheuristics efficiency. Therefore, we characterize two landscapes differenciated by their neighborhood function and then, we analyze the performance of classical metaheuristics using one or the other neighborhood operator. Finally, a discussion provides insights on the relations between results of the landscape analysis and results of methods performance.  相似文献   
4.
5.
6.
The technique of ferromagnetic resonance at 23 GHz has been used to determine the first three anisotropy constants of pure Ni down to 4.2K. A temperature and orientation dependent linewidth has also been observed.  相似文献   
7.
Reaction of [Ru(Hedta)Cl]- with H2O2 in the presence of arginine, produces NO, in the form of an Ru(II)-(NO+) complex and citrulline which is a remarkably simple model system for the physiological NO synthase reaction.  相似文献   
8.
The synthesis and spectroscopic characterisation of novel mononuclear Ru(III)(edta)(hydroxamato) complexes of general formula [Ru(H2edta)(monoha)] (where monoha = 3- or 4-NH2, 2-, 3- or 4-C1 and 3-Me-phenylhydroxamato), as well as the first example of a Ru(III)-N-aryl aromatic hydroxamate, [Ru(H2edta)(N-Me-bha)].H2O (N-Me-bha = N-methylbenzohydroxamato) are reported. Three dinuclear Ru(III) complexes with bridging dihydroxamato ligands of general formula [{Ru(H2edta)}2(mu-diha)] where diha = 2,6-pyridinedihydroxamato and 1,3- or 1,4-benzodihydroxamato, the first of their kind with Ru(III), are also described. The speciation of all of these systems (with the exception of the Ru-1,4-benzodihydroxamic acid and Ru-N-methylbenzohydroxamic systems) in aqueous solution was investigated. We previously proposed that nitrosyl abstraction from hydroxamic acids by Ru(III) involves initial formation of Ru(III)-hydroxamates. Yet, until now, no data on the rate of nitric oxide (NO) release from hydroxamic acids has been published. We now describe a UV-VIS spectroscopic study, where we monitored the decrease in the ligand-to-metal charge-transfer band of a series of Ru(III)-monohydroxamates with time, with a view to gaining an insight into the NO-releasing properties of hydroxamic acids.  相似文献   
9.
The 2-pyridinecarboxylate (2-pyca) platinum(IV) complex [2-pycaH2][PtCl4(2-pyca)].H2O, 1, has been synthesised from K2[PtCl4] following the hydrolysis of 2-pyridinehydroxamic acid (2-pyhaH) in the presence of H2O2, and directly from K2[PtCl6] and picolinic acid. Structural characterisation of 1 reveals octahedral geometry about platinum(IV) consisting of a (N,O)-bidentate pyridinecarboxylate ligand and four chloride ligands. A mechanism for the hydrolysis of 2-pyridinehydroxamic acid to 2-pyridinecarboxylic acid is proposed. Two novel coordination modes of hydroxamic acids to platinum(II) are also reported. The dinuclear platinum ammine hydroximato complex, [{cis-Pt(NH3)2}2(mu-2-pyhaH(-1))](ClO4)2.H2O, 3, has been synthesised where the two platinum(II) centres are bridged via(O,O) and (N,N) coordination. The latter coordination mode is via the hydroximate nitrogen and the pyridine nitrogen. The corresponding mononuclear platinum(II) pyridinehydroxamate complex, [cis-Pt(NH3)2(2-pyha)]ClO4, 4, has been synthesised. Spectroscopic studies indicate that the coordination mode is through the pyridine nitrogen and hydroxamate oxygen atoms (N,O).  相似文献   
10.
Laser‐induced breakdown spectroscopy (LIBS) is currently being used onboard the Mars Science Laboratory rover Curiosity to predict elemental abundances in dust, rocks, and soils using a partial least squares regression model developed by the ChemCam team. Accuracy of that model is constrained by the number of samples needed in the calibration, which grows exponentially with the dimensionality of the data, a phenomenon known as the curse of dimensionality. LIBS data are very high dimensional, and the number of ground‐truth samples (i.e., standards) recorded with the ChemCam before departing for Mars was small compared with the dimensionality, so strategies to optimize prediction accuracy are needed. In this study, we first use an existing machine learning algorithm, locally linear embedding (LLE), to combat the curse of dimensionality by embedding the data into a low‐dimensional manifold subspace before regressing. LLE constructs its embedding by maintaining local neighborhood distances and discarding large global geodesic distances between samples, in an attempt to preserve the underlying geometric structure of the data. We also introduce a novel supervised version, LLE for regression (LLER), which takes into account the known chemical composition of the training data when embedding. LLER is shown to outperform traditional LLE when predicting most major elements. We show the effectiveness of both algorithms using three different LIBS datasets recorded under Mars‐like conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号