首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
化学   67篇
晶体学   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  1997年   2篇
  1993年   2篇
  1991年   1篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
排序方式: 共有69条查询结果,搜索用时 359 毫秒
1.
Since it was first isolated, the oil extracted from seeds of neem (Azadirachtin indica A juss) has been extensively studied in terms of its efficacy as an insecticide. Several industrial formulations are produced as emulsifiable solutions containing a stated titer of the active ingredient azadirachtin-A (AZ-A). The work reported here is the characterization of a formulation of this insecticide marketed under the name of Neem-azal T/S and kinetic studies of the major active ingredient of this formulation. We initially performed liquid–liquid extraction to isolate the neem oil from other ingredients in the commercial mixture. This was followed by a purification using flash chromatography and semi-preparative chromatography, leading to 13C NMR identification of structures such as azadirachtin-A, azadirachtin-B, and azadirachtin-H. The neem extract was also characterized by HPLC–MS using two ionization sources, APCI (atmospheric pressure chemical ionization) and ESI (electrospray ionization) in positive and negative ion modes of detection. This led to the identification of other compounds present in the extract—azadirachtin-D, azadirachtin-I, deacetylnimbin, deacetylsalannin, nimbin, and salannin. The comparative study of data gathered by use of the two ionization sources is discussed and shows that the ESI source enables the largest number of structures to be identified. In a second part, kinetic changes in the main product (AZ-A) were studied under precise conditions of pH (2, 4, 6, and 8), temperature (40 to 70 °C), and light (UV, dark room and in daylight). This enabled us to determine the degradation kinetics of the product (AZ-A) over time. The activation energy of the molecule (75±9 kJ mol–1) was determined by examining thermal stability in the range 40 to 70 °C. The degradation products of this compound were identified by use of HPLC–MS and HPLC–MS–MS. The results enabled proposal of a chemical degradation reaction route for AZ-A under different conditions of pH and temperature. The data show that at room temperature and pH between 4 and 5 the product degrades into two preferential forms that are hydrolyzed to a single product over time and as a function of pH change.  相似文献   
2.
The aim of the present work was to identify and follow the main and side reactions involved in the ring dehydration of amic acid prepared from “bridged” dianhydrides whose central substituent is an electron acceptor or donor, and an aromatic diamine. Several isomeric structures may appear as a result of the opening reactivity and selectivity of anhydride groups towards the aromatic amine. Reaction mechanisms and kinetics were thus studied in solvent phase with HPLC and 13C-NMR and in solid molten phase by FTIR and solid 13C-NMR. The experimental conditions (liquid and solid) and the structure of the products (type of central substituent) affecting the mechanisms and kinetics of the reactions were noted. © 1993 John Wiley & Sons, Inc.  相似文献   
3.
The structure of bis-3,3,5-trimethyl cyclohexyl phthlate is described for the solid state (X-rays, 13C NMR) and in solution (13C and 1H NMR). The results show similarity of structure in the two states.  相似文献   
4.
5.
6.
X-ray and NMR (250 MHz) data for chlorinated 4,4-dimethylcyclohexanones lead to the following conclusions: carbonyl and chlorine substituent effects on 2J and 3J coupling constants are similar to those observed for 4-tert-butylcyclohexanones. In other respects, the gem dimethyl and the tert-butyl groups induce on the ring similar large 4J coupling constants (H-3′? C-3? C-4? C-5? H-5′); the results can be interpreted in terms of local gemoetric deformations and additivity of these deformations. The determination of dihedral angles by Lambert's method and from X-ray data shows the identity of the structures in the solid state and the dissolved state and confirms the great structural similarity between 4-tert-butyl- and 4,4-dimethylcyclohexanone derivatives.  相似文献   
7.
Enantioselective capillary GC on a Supelco β-DEX 225 column (heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin SPB 20poly—20% diphenyl, 80% dimethylsiloxane) and isotope-ratio mass spectrometry, coupled online with capillary GC on an HP5 column have been used for origin-specific analysis and authenticity control of essential oils, for example lemon (Citrus limon), lemongrass (Cymbopogon citratus and Cymbopogon flexuosus), citronella (Cymbopogon nardus L.—Ceylon type and Cymbopogon winterianus—Java type), Litsea cubeba, Lippia citriodora, lemon myrtle (Backhousia citriodora), lemon gum (Eucalyptus citriodora), and, especially, precious lemon balm oil (Melissa officinalis L.). Isotope data (δ13CPDB and δ2HV-SMOW) for citral (neral + geranial) and citronellal from on-line GC–C/Py–IRMS and chiral data for citronellal in these essential oils are reported. The possibility of using these data to determine the origin of these essential oils and to detect adulteration is discussed. Principal-components analysis (PCA) of specific compounds in two essential oils of lemongrass and Litsea cubeba was performed as a practical statistical method for distinguishing between these two types of oil.  相似文献   
8.
9.
Structural analysis of methyl and dimethyl cyclohexanols using gas-lquid chromatography and C13 nuclear magnetic resonance

Kováts' retention indices and C13 chemical shifts of all twenty dimethyl cyclohexanols have been measured and assigned. It has been found that there are good linear relationships between carbon chemical shifts and the Kováts' indices.  相似文献   

10.
We have synthesized and studied the ring dehydration mechanisms and kinetics of polyamic acid models in solution and in the solid state using 13C-NMR (solid and liquid), HPLC, FTIR, and x-ray diffraction. Results obtained in solution show the role of temperature, catalysts, and the basicity of the amine in ring dehydration mechanisms and kinetics, as well as conformation and intramolecular bonds in the amic acid bond in the solid state. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号