首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学   22篇
数学   1篇
物理学   5篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
Complete biophysical characterization of complexes (polyplexes) of cationic polymers and DNA is needed to understand the mechanism underlying nonviral therapeutic gene transfer. In this article, we propose a new series of synthesized random cationic polymers (RCPs) from methoxy poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride with different mole ratios (32:68, 11:89, and 6:94) which could be used as a model system to address and answer the basic questions relating to the mechanism of the interaction of calf thymus DNA (CT-DNA) and cationic polymers. The solubility of the complexes of CT-DNA and RCP was followed by turbidity measurements. It has been observed that complexes of RCP with 68 mol % MePEGMA precipitate near the charge neutralization point, whereas complexes of the other two polymers are water-soluble and stable at all compositions. Dnase 1 digestion experiments show that DNA is inaccessible when it forms complexes with RCP. Ethidium bromide exclusion and gel electrophoretic mobility show that both polymers are capable of binding with CT-DNA. Atomic force microscopy images in conjunction with light scattering experiments showed that the complexes are spherical in nature and 75-100 nm in diameter. Circular dichroism spectroscopy studies indicated that the secondary structure of DNA in the complexes is not perturbed due to the presence of poly(ethylene glycol) segments in the polymer. Furthermore, we used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the helix-coil transition of CT-DNA in the complexes. UV and differential scanning calorimetry melting experiments revealed that DNA in the complexes is more stable than in the free state and the extent of stability depends on the polymer composition. Isothermal titration calorimetry experiments showed that the binding of these RCPs to CT-DNA is associated with small exothermic enthalpy changes. A complete thermodynamic profile showed that the RCP/DNA complex formation is entropically favorable. Much broader opportunities to vary the architecture of the polymers studied here make these systems promising in addressing various basic and practical problems in gene delivery systems.  相似文献   
2.
A general procedure using triphenylphosphine and diethylazodicarboxylate to prepare 2-oxazolines is described.  相似文献   
3.
Proton-ligand formation constants of salicylhydroxamic acids (SHA) and their nuclear substituted derivatives have been estimated topologically using the normalized Wiener index, referred to as mean square Wiener index (Wms). Regression analysis of the data indicates that Wms can be used successfully for estimating and monitoring proton-ligand formation constants.  相似文献   
4.
The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCPSDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0.6 ± 0.05, respectively.  相似文献   
5.
Reduced graphene oxide (rGO)–NaBH4 is reported as mild and efficient catalyst-system for chemo-/regioselective reduction of structurally different aliphatic, aromatic as well as α,β-unsaturated aldehydes and ketones in water. The rGO was prepared by reducing graphene oxide using Tulsi leaf extract as bio-reductant. Operational simplicity, ambient reaction condition, high yield of pure products (80–97%), no by-product formation, no use of column chromatography for purification are the salient features of the envisaged protocol. Furthermore, the recovered TRGO was recycled and reused for subsequent reductions up to five times without any loss in activity.  相似文献   
6.
Aggregation behavior in aqueous solution of a series of poly (ethylene glycol) (PEG)-based macromonomers with methacryloyl group as the only hydrophobic segment has been investigated using surface tension, steady-state and time-resolved fluorescence spectroscopy using pyrene as a probe, and small-angle neutron scattering techniques. The general formula of these macromonomers is CH2=C(CH3)–CO–O–Em–CH3, where E is the ethylene glycol unit and m=8 (ME8), 18 (ME18), 49 (ME49), and 120 (ME120). The results indicate that a macromonomer with 8 ethylene glycol units forms as an aggregate above a certain critical concentration, which can be defined as critical aggregation concentration. The observed high value of I1/I3 in pyrene emission spectra at the interface of these aggregates and the inability to scatter a neutron beam by these aggregates indicate that the hydrophobic cluster formed by this macromonomer is remarkably solvated. ME18 has a tendency to aggregate but others do not form any hydrophobic cluster. The homopolymerization behaviors of these macromonomers in an aqueous medium at 70°C are consistent with these possibi- lities.  相似文献   
7.
This paper is a first comprehensive study on the correlated ion transport mechanisms contributing to the overall conductivity behavior in a new class of poly(ethylene oxide)-polyurethane/polyacrylonitrile (PEO-PU/PAN) semi-interpenetrating polymer networks (semi-IPNs)-salt complex polymer electrolytes. A simultaneous investigation of the electrical response on PEO-PU/PAN/LiClO(4) and PEO-PU/PAN/LiCF(3)SO(3) semi-IPNs with varying EO/Li mole ratios (100, 60, 30, 20, 15, 10) has been carried out by impedance spectroscopy. Analysis of the complex plane and spectroscopic plots indicated the presence of two microscopic phases corresponding to the PEO-PU and PAN domains, which leads to space charge polarization in these systems. A suitably modified approach based on the universal power law (UPL) considering the independent contribution from the individual microphases of semi-IPNs facilitates a complete interpretation of the spectroscopic profiles for the real component of conductivity (sigma'(omega)). The sigma'(omega) spectroscopic profiles were fitted with two power law equations, where the frequency region up to approximately 300 kHz is the conductivity profile associated with the PAN phase and beyond this is the superimposed contribution of the PEO-PU phase. Simulated fits using the UPL equation revealed two relaxation times (tau(PEO)(-)(PU), tau(PAN)) related to ionic hopping in the PEO-PU and PAN phases in addition to the conductivity relaxation time (tau(peak)) determined from the Debye peaks. The respective power law exponents (n(PEO)(-)(PU) approximately 0.5-0.8, n(PAN) approximately 1.0-1.6) indicate that though cationic hopping in the softer PEO-PU phase is favored, anionic hopping in the PAN phase contributes significantly to the charge transport processes in these semi-IPNs. Correlation of the experimental results with the simulated fits enable us to distinguish the effects of semi-IPN composition, temperature, morphology, ion-ion, and ion-polymer interactions, which influence the microscopic molecular events, involved in the charge transport in these complex semi-IPN polymer electrolytes.  相似文献   
8.
9.
10.
[structure: see text]. The present communication reports a facile route for Pd(0) immobilization on the surface of amine-terminated Fe3O4 and NiFe2O4 nanoparticles for a series of hydrogenation reactions. The catalysts are completely recoverable with the simple application of an external magnetic field, and the efficiency of the catalyst remains unaltered even after 10 repeated cycles for each of the reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号