首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   6篇
物理学   1篇
  2016年   1篇
  2008年   1篇
  2005年   2篇
  2004年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) in the amorphous state were miscible in all of the blend compositions studied, as evidenced by a single, composition‐dependent glass‐transition temperature observed for each blend composition. The variation in the glass‐transition temperature with the blend composition was well predicted by the Gordon–Taylor equation, with the fitting parameter being 0.91. The cold‐crystallization (peak) temperature decreased with an increasing PTT content, whereas the melt‐crystallization (peak) temperature decreased with an increasing amount of the minor component. The subsequent melting behavior after both cold and melt crystallizations exhibited melting point depression behavior in which the observed melting temperatures decreased with an increasing amount of the minor component of the blends. During crystallization, the pure components crystallized simultaneously just to form their own crystals. The blend having 50 wt % of PTT showed the lowest apparent degree of crystallinity and the lowest tensile‐strength values. The steady shear viscosity values for the pure components and the blends decreased slightly with an increasing shear rate (within the shear rate range of 0.25–25 s?1); those of the blends were lower than those of the pure components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 676–686, 2004  相似文献   
3.
The effects of solvents and their properties on electro-spinnability of the as-prepared polystyrene (PS) solutions and the morphological appearance of the as-spun PS fibers were investigated qualitatively by means of a scanning electron microscope (SEM). The eighteen solvents used were benzene, t-butylacetate, carbontetrachloride, chlorobenzene, chloroform, cyclohexane, decahydronaphthalene (decalin), 1,2-dichloroethane, dimethylformamide (DMF), 1,4-dioxane, ethylacetate, ethylbenzene, hexane, methylethylketone (MEK), nitrobenzene, tetrahydrofuran (THF), 1,2,3,4-tetrahydronaphthalene (tetralin), and toluene. The PS solutions in 1,2-dichloroethane, DMF, ethylacetate, MEK, and THF could produce fibers with high enough productivity, while the PS solutions in benzene, cyclohexane, decalin, ethylbenzene, nitrobenzene, and tetralin were not spinnable. Qualitative observation of the results obtained suggested that the important factors determining the electro-spinnability of the as-prepared PS solutions are high enough values of both the dipole moment of the solvent and the conductivity of both the solvent and the resulting solutions, high enough boiling point of the solvent, not-so-high values of both the viscosity and the surface tension of the resulting solutions.  相似文献   
4.
Isothermal crystallization and subsequent melting behavior for three different types of linear aromatic polyester, namely poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poly(butylene terephthalate) (PBT), were investigated (with an emphasis on PTT in comparison with PET and PBT). These polyesters were different in the number of methylene groups (i.e. 2, 3, and 4 for PET, PTT, and PBT, respectively). Isothermal crystallization studies were carried out in a differential scanning calorimeter (DSC) over the crystallization temperature range of 182-208 °C. The wide-angle X-ray diffraction (WAXD) technique was used to obtain information about crystal modification and apparent degree of crystallinity. The kinetics of the crystallization process was assessed by a direct fitting of the experimental data to the Avrami, Tobin, and Malkin macrokinetic models. It was found that the crystallization rates of these polyesters were in the following order: PBT>PTT>PET, and the melting of these polyesters exhibited multiple-melting phenomenon. Lastly, the equilibrium melting temperature for these polyesters was estimated based on the linear and non-linear Hoffman-Weeks (LHW and NLHW) extrapolative methods.  相似文献   
5.
Electrostatic spinning or electrospinning is now a well‐known process for fabricating ultrafine fibers with diameters in the submicrometer down to nanometer range from materials of diverse origins. The polarity of the emitting electrode (i.e., the one that is in contact with the polymer solution or melt) can be either positive or negative. In the present contribution, the effects of emitting electrode polarity and some processing parameters (i.e., polyamide‐6 (PA‐6) concentration, molecular weight of PA‐6, electrostatic field strength, solution temperature, solvent type, and addition of an inorganic salt) on morphological appearance and average size of the as‐spun PA‐6 fibers were investigated. Scanning electron micrographs showed obvious morphological difference between the fibers obtained under positive and negative polarity of the emitting electrode. The main differences were that the cross section of the as‐spun PA‐6 fibers obtained under the negative electrode polarity was flat, while that of those obtained under the positive one appeared to be round and that the average size of the fibers obtained under the negative electrode polarity was larger than that of those obtained under the positive one. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3699–3712, 2005  相似文献   
6.
Poly(Divinylbenzene)PolyHIPE (Poly(DVB)PolyHIPE) was successfully prepared by using two different systems of three-component surfactants (S20M and S80M) and toluene as porogenic solvent. Phase morphology, mechanical properties and surface area measurements of the obtained Poly(DVB)Poly HIPE were investigated. After polymerization of continuous phase followed by extraction process, the porous materials (open cellular structure with interconnections) were obtained. The cell size and surface area were found to be improved: this is due to the ability of porogenic solvent and mixture of the surfactants to prevent the Ostwald ripening (coalescence) of the emulsion droplet system. Moreover, the surface area and mechanical properties of the resulting materials were found to be depended on the Soxhlet extraction time. It was demonstrated that the usage of Soxhlet extraction technique for Poly(DVB)PolyHIPE improved surface area of the obtained materials by 107% as compared with the unextracted PolyHIPE. However, when the extraction time was longer than 12 hours, the properties of the obtained materials became poor. It was concluded that the suitable Soxhlet extraction time for Poly(DVB)PolyHIPE was 6–12 hours and at this condition, high surface area with the highest mechanical properties of the porous material were obtained.  相似文献   
7.
Electrospinning is a process by which ultrafine fibers which have diameters in the range of tens of nanometers to less than ten of micrometers can be produced. This process utilizes expulsion of charges as a means to very thin fiber formation. In this short report, the effects of some of the influencing solution and process parameters (i.e. solution concentration, emitting electrode polarity, solvent type, and salt addition) on morphological appearance of electrospun polyamide-6 fibers were investigated based on visual observation of a series of scanning electron micrographs. It was found that all of the parameters studied played important roles in determining morphology and sizes of the fibers obtained.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号