首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   33篇
数学   1篇
物理学   7篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 328 毫秒
1.
2.
3.
An extended system molecular dynamics method for the isomolar semigrand ensemble (fixed number of particles, pressure, temperature, and fugacity fraction) is developed and applied to the calculation of liquid-liquid equilibria (LLE) for two Lennard-Jones mixtures. The method utilizes an extended system variable to dynamically control the fugacity fraction xi of the mixture by gradually transforming the identity of particles in the system. Two approaches are used to compute coexistence points. The first approach uses multiple-histogram reweighting techniques to determine the coexistence xi and compositions of each phase at temperatures near the upper critical solution temperature. The second approach, useful for cases in which there is no critical solution temperature, is based on principles of small system thermodynamics. In this case a coexistence point is found by running N-P-T-xi simulations at a common temperature and pressure and varying the fugacity fraction to map out the difference in chemical potential between the two species A and B (mu(A)-mu(B)) as a function of composition. Once this curve is known the equal-distance/equal-area criterion is used to determine the coexistence point. Both approaches give results that are comparable to those of previous Monte Carlo (MC) simulations. By formulating this approach in a molecular dynamics framework, it should be easier to compute the LLE of complex molecules whose intramolecular degrees of freedom are often difficult to properly sample with MC techniques.  相似文献   
4.
Recently, Arya et al. [J. Chem. Phys. 113, 2079 (2000)] introduced a new molecular dynamics method to rapidly compute the viscosity of fluids. The technique, termed momentum impulse relaxation (MIR), involves the imposition of a Gaussian velocity profile on an equilibrated system, after which the decay in the profile is monitored as a function of time. The shear viscosity is computed by matching the rate of decay of the velocity profile to the corresponding solution of the Navier-Stokes equation. The method was originally applied to simple systems (argon and n-butane) and found to give a comparable accuracy to conventional equilibrium and nonequilibrium methods with more than an order of magnitude reduction in computing time. In this work, we extend and generalize the method to examine larger molecules with higher viscosities than have been examined previously. A detailed analysis of the method is given, including the effect the velocity boundary conditions have on the viscosity, the sensitivity of the results to the velocity profile fitting procedure, the effect of preequilibration of the Gaussian profile, and the effect the system size and box shape have on the accuracy and speed of the method. It is shown that the MIR method can be extended to treat multiatom systems without loss of accuracy or computational efficiency.  相似文献   
5.
The Henry's constants of water, carbon dioxide, ethane, ethene, methane, oxygen, and nitrogen are computed in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) using test particle insertion and expanded ensemble Monte Carlo methods. The partial molar enthalpy and partial molar entropy of solvation are also computed for water, carbon dioxide, and oxygen. The results from the simulations are compared against experimental data from the literature. In addition, the accuracy and precision of the two methods in determining the Henry's constant are examined. Local organization of the ionic liquid around a solute molecule is analyzed, and the interactions responsible for the experimentally observed solubility trends are identified.  相似文献   
6.
An analytic theory for the Knudsen self-diffusivity D(s) of hard spheres in an atomically rough slit-shaped pore is presented which quantitatively matches simulation results. The theory assumes that, due to chaotic molecular trajectories caused by surface morphology, collisions of gas molecules with the wall are partly diffuse and partly specular, the relative magnitude of each depending upon the magnitude of the tangential momentum accommodation coefficient f. The theory thus represents a universal Knudsen fluctuation-dissipation correlation between longitudinal momentum loss and diffusivity that can simplify efforts to estimate D(s). It is also found that D(s) computed using Maxwell's theory of slip, in which collisions with the walls are assumed to be purely diffuse or specular, overpredicts the simulated D(s) by a large margin.  相似文献   
7.
8.
We present an adaptable method to compute the solubility limit of solids by molecular simulation, which avoids the difficulty of reference state calculations. In this way, the method is highly adaptable to molecules of complex topology. Results are shown for solubility calculations of sodium chloride in water and light alcohols at atmospheric conditions. The pseudosupercritical path integration method is used to calculate the free energy of the solid and gives results that are in good agreement with previous studies that reference the Einstein crystal. For the solution phase calculations, the self-adaptive Wang-Landau transition-matrix Monte Carlo method is used within the context of an expanded isothermal-isobaric ensemble. The method shows rapid convergence properties and the uncertainty in the calculated chemical potential was 1% or less for all cases. The present study underpredicts the solubility limit of sodium chloride in water, suggesting a shortcoming of the molecular models. Importantly, the proper trend for the chemical potential in various solvents was captured, suggesting that relative solubilities can be computed by the method.  相似文献   
9.
10.
A combined experimental and molecular dynamics study has been performed on the following pyridinium-based ionic liquids: 1-n-hexyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide ([hmpy][Tf(2)N]), 1-n-octyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide ([ompy][Tf(2)N]), and 1-n-hexyl-3,5-dimethylpyridinium bis(trifluoromethanesulfonyl)imide ([hdmpy][Tf(2)N]). Pulsed field gradient nuclear magnetic resonance spectroscopy was used to determine the self-diffusivities of the individual cations and anions as a function of temperature. Experimental self-diffusivities range from 10(-11) to 10(-10) m(2)/s. Activation energies for diffusion are 44-49 kJ/mol. A classical force field was developed for these compounds, and molecular dynamics simulations were performed to compute dynamic as well as thermodynamic properties. Evidence of glassy dynamics was found, preventing accurate determination of self-diffusivities over molecular dynamics time scales. Volumetric properties such as density, isothermal compressibility, and volumetric expansivity agree well with experiment. Simulated heat capacities are within 2% of experimental values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号