首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   28篇
数学   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2000年   2篇
排序方式: 共有29条查询结果,搜索用时 62 毫秒
1.
The striking difference in cytotoxic activity between the inactive cis-[Ru(bpy)(2)Cl(2)] and the recently reported highly cytotoxic alpha-[Ru(azpy)(2)Cl(2)] (alpha indicating the isomer in which the coordinating Cl atoms, pyridine nitrogens, and azo nitrogens are in mutual cis, trans, cis orientation) encouraged the synthesis of the mixed-ligand compound cis-[Ru(azpy)(bpy)Cl(2)]. The synthesis and characterization of the only occurring isomer, i.e., alpha-[Ru(azpy)(bpy)Cl(2)], 1 (alpha denoting the isomer in which the Cl ligands are cis related to each other and the pyridine ring of azpy is trans to the pyridine ring of bpy), are described. The solid-state structure of 1 has been determined by X-ray structure analysis. The IC(50) values obtained for several human tumor cell lines have indicated that compound 1 shows mostly a low to moderate cytotoxicity. The binding of the DNA model base 9-ethylguanine (9-EtGua) to the hydrolyzed species of 1 has been studied and compared to DNA model base binding studies of cis-[Ru(bpy)(2)Cl(2)] and alpha-[Ru(azpy)(2)Cl(2)]. The completely hydrolyzed species of 1, i.e., alpha-[Ru(azpy)(bpy)(H(2)O)(2)](2+), has been reacted with 9-EtGua in water at room temperature for 24 h. This resulted in the monofunctional binding of only one 9-EtGua, coordinated via the N7 atom. The product has been isolated as alpha-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2), 2, and characterized by 2D NOESY NMR spectroscopy. The NOE data show that the 9-EtGua coordinates (under these conditions) at the position trans to the azo nitrogen atom. Surprisingly, time-dependent (1)H NMR data of the 9-EtGua adduct 2 in acetone-d(6) show an unprecedented positional shift of the 9-EtGua from the position trans to the azo nitrogen to the position trans to the bpy nitrogen atom, resulting in the adduct alpha'-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2) (alpha' indicating 9-EtGua is trans to the bpy nitrogen). This positional isomerization of 9-EtGua is correlated to the cytotoxicity of 1 in comparison to both the cytotoxicity and 9-EtGua coordination of cis-[Ru(bpy)(2)Cl(2)], alpha-[Ru(azpy)(2)Cl(2)], and beta-[Ru(azpy)(2)Cl(2)]. This positional isomerization process is unprecedented in model base metal chemistry and could be of considerable biological significance.  相似文献   
2.
3.
Direct visualization of organometallic-organic and novel all-organometallic multilayer superlattices prepared by layer-by-layer assembly of cationic/anionic polyferrocenylsilane and anionic polystyrene sulfonate polyelectrolytes using a gold coating/transmission electron microscopy (TEM) technique is reported.  相似文献   
4.
We present a parallel multigrid solver on locally refined meshes for solving very complex three‐dimensional flow problems. Besides describing the parallel implementation in detail, we prove the smoothing property of the suggested iteration for a simple model problem. For demonstration of the efficiency and feasibility of the solver, we show a chemically reactive flow simulation for a Methane burner using detailed chemical reaction modeling. Further, we give the results of an ocean flow simulation. All described methods are implemented in the finite element toolbox Gascoigne. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
6.
An attempt was made to quantitatively describe the binding of phenylarsenic species to thiol-containing biomolecules using electrospray ionization mass spectrometry (ESI-MS). The extent of the reactions of phenylarsine oxide (PAO) with the peptides glutathione and isotocin (ITC) and with the protein thioredoxin resulting in covalent As--S bonds were quantified by deriving the dependence of the corresponding ion signal intensities on the concentration of the reaction products. Problems complicating a quantitative evaluation of the mass spectra, such as signal suppression effects, were critically evaluated. Equilibrium constants for condensation reactions as well as formation constants for noncovalent associations were calculated by means of ESI-MS signal intensities. The comparison of the reaction of PAO with different thiol reactants revealed the highest binding affinity for ITC followed by thioredoxin and a lower affinity to glutathione. Possibly, the intramolecular formation of RS-As(C(6)H(5))-SR occurring in case of ITC and thioredoxin is favored over the intermolecular product involving two molecules glutathione even though the molecular mass of glutathione (307 g mol(-1)) is much smaller than that of ITC (966 g mol(-1)) and thioredoxin (11 688 g mol(-1)). A similar binding affinity for trivalent (K approximately 1.6 x 10(-3) l micromol(-1)) and pentavalent (K approximately 1.6 x 10(-3) and 1.0 x 10(-3) l micromol(-1)) arsenic species was found for the formation of a noncovalent complex of glutathione with different phenylarsenic compounds.  相似文献   
7.
Trivalent and pentavalent arsenic were incubated with sulfur-containing amino acid, peptide and protein solutions both as organic compounds (phenylarsine oxide, phenylarsonic acid, dimethylarsinic acid, monomethylarsonic acid) and as inorganic compounds (arsenite, As(III), and arsenate, As(V)). After incubation of phenylarsine oxide solutions with cysteine and glutathione the mass spectra showed a covalent bond between arsenic and sulfur, which was stable at both acidic and neutral pH values. The mass spectra were dominated by monovalent ions at m/z 272 for cysteine samples and at m/z 458 for glutathione samples. Based on these masses the ionic structures could be ascribed to either fragment ions of the covalent arsenic-sulfur complexes or to other arsenic-bonding sites presumably at the amino group. Interestingly, under the same conditions no interactions of inorganic arsenite or arsenate could be measured. In the presence of added Cu(2+) ions all mass signals caused by a reaction of phenylarsine oxide with glutathione disappeared. In these mass spectra only the oxidised form of glutathione (GSSG) was found because of the redox activity of Cu(II). For the model protein lysozyme, no interactions with arsenic could be detected, whereas definite Cu- and Zn-lysozyme complexes with a stoichiometry of 1:1 and 2:1 for Zn(2+) ions and Cu(2+) ions, respectively, were observed. In contrast, for thioredoxin a bonding of As that depended on the concentration of the disulfide-reducing agent tris(2-carboxyethyl) phosphine was demonstrated.For three different phenylarsonic acids and for dimethylarsinic acid that all contain pentavalent arsenic, complexes with glutathione appeared in the mass spectra, which can be attributed to non-covalent interactions or to a covalent bond caused by an additive reaction.The optimisation of the experimental conditions necessary for the mass spectrometric analysis of the interactions of the arsenic species with peptides and proteins is described and the obtained mass spectra that provide information on the kinds of bonds are discussed.  相似文献   
8.
Organic itraconazole (ITZ) solutions were mixed with aqueous solutions to precipitate sub-300 nm particles over a wide range of energy dissipation rates, even for drug loadings as high as 86% (ITZ weight/total weight). The small particle sizes were produced with the stabilizer poloxamer 407, which lowered the interfacial tension, increasing the nucleation rate while inhibiting growth by coagulation and condensation. The highest nucleation rates and slowest growth rates were found at temperatures below 20 degrees C and increased with surfactant concentration and Reynolds number (Re). This increase in the time scale for growth reduced the Damkohler number (Da) (mixing time/precipitation time) to low values even for modest mixing energies. As the stabilizer concentration increased, the average particle size decreased and reached a threshold where Da may be considered to be unity. Da was maintained at a low value by compensating for a change in one variable away from optimum conditions (for small particles) by manipulating another variable. This tradeoff in compensation variables was demonstrated for organic flow rate vs Re, Re vs stabilizer concentration, stabilizer feed location (organic phase vs aqueous phase) vs stabilizer concentration, and stabilizer feed location vs Re. A decrease in the nucleation rate with particle density in the aqueous suspension indicated that secondary nucleation was minimal. A fundamental understanding of particle size control in antisolvent precipitation is beneficial for designing mixing systems and surfactant stabilizers for forming nanoparticles of poorly water soluble drugs with the potential for high dissolution rates.  相似文献   
9.
The synthesis and characterization of alpha-[Ru(azpy)2(NO3)2], 1, are reported (azpy is 2-(phenylazo)pyridine; alpha indicates the isomer in which the coordinating pairs ONO2, N(py), and N(azo) are cis, trans, and cis, respectively). The solid-state structure of 1 has been determined by X-ray crystallography. Crystal data: orthorhombic a = 15.423(5) A, b = 14.034(5) A, c = 10.970(5) A, V = 2374(2) A3, space group P2(1)2(1)2(1) (No. 19), Z = 4, Dcalc = 1.655 g cm-3. The structure refinement converged at R1 = 0.042 and wR2 = 0.118 for 3615 unique reflections and 337 parameters. The octahedral complex shows monodentate coordination of the two nitrate ligands. The Ru-N(azo) bond distances (2.014(4) and 1.960(4) A), slightly shorter than the Ru-N(py) bonds (2.031(4) and 2.059(4) A), agree well with the pi-back-bonding ability of the azo groups. The binding of the DNA-model bases 9-ethylguanine (9egua) and guanosine (guo) to 1 has been studied and compared with previously obtained results for the binding of model bases to the bis(bipyridyl)ruthenium(II) complex. The ligands 9egua and guo appear to form monofunctional adducts, which have been isolated as alpha-[Ru(azpy)2(9egua)Cl]PF6, 2, alpha-[Ru(azpy)2(9egua)(H2O)]-(PF6)2, 3, alpha-[Ru(azpy)2(guo)(H2O)](PF6)2, 4, and alpha-[Ru(azpy)2(guo)Cl]Cl, 5. The orientations of 9egua and guo in these complexes have been determined in detail with the use of 2D NOESY NMR spectroscopy. In 2 and 5, H8 is directly pointed toward the coordinated Cl, whereas, in 3 and 4, H8 is wedged between the pyridine and phenyl rings. The guanine derivatives in the azpy complexes can have more orientations than found for related cis-[Ru(bpy)2Cl2] species. This fluxionality is considered to be important in the binding of the alpha-bis(2-(phenylazo)pyridine)ruthenium(II) complex to DNA. In complex 1, ruthenium is the chiral center and in the binding to guanosine, two diastereoisomers each of adducts 4 and 5 have been clearly identified by NMR spectroscopy.  相似文献   
10.
The didentate ligand 2-phenylazopyridine (azpy) can--in theory--give rise to five different isomeric complexes of the type [Ru(azpy)2Cl2], of which three have been known since 1980. The molecular structures of the cis-dichlorobis(2-phenylazopyridine) ruthenium(II) complexes alpha-[Ru(azpy)2Cl2] and beta-[Ru(azpy)2Cl2](in which the coordinating pyridine nitrogen atoms are in mutually trans and cis positions, respectively, whilst the azo nitrogen atoms are in mutually cis positions) were unambiguously determined in the early 1980s. The third isomer, gamma-[Ru(azpy)2Cl2], has for two decades, erroneously, been assumed to be the all-trans isomer. In a recent communication we have proven that for this gamma isomer the chloride ions are indeed in a trans geometry, but the pyridine nitrogen and azo nitrogen atoms of the two azpy ligands are in mutually cis geometries. In this paper the isolation of a fourth isomer is presented, the hitherto unknown delta-[Ru(azpy)2Cl2]. The isomeric structure of delta-[Ru(azpy)2Cl2] has been determined by 1H-NMR spectroscopy and single-crystal X-ray diffraction analysis, and is the all-trans isomer. The bis(azpy)-ruthenium(II) isomers are of interest because of the pronounced cytotoxicity they exhibit against tumour cell lines and could be very useful in the search for structure-activity relationships of antitumour-active ruthenium complexes, as among the isomers there is a significant difference in activity. It is of paramount importance to have a good understanding of the structural and spectroscopic properties of these complexes, which in this paper are compared and discussed, with a particular emphasis on 1D and 2D 1H NMR spectroscopies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号