首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
化学   43篇
数学   1篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有46条查询结果,搜索用时 20 毫秒
1.
Poplar (Populus) and birch (Betula) species are widely distributed throughout the northern hemisphere, where they are foundation species in forest ecosystems and serve as important sources of pulpwood. The ecology of these species is strongly linked to their foliar chemistry, creating demand for a rapid, inexpensive method to analyze phytochemistry. Our study demonstrates the feasibility of using near-infrared reflectance spectroscopy (NIRS) as an inexpensive, high-throughput tool for determining primary (e.g., nitrogen, sugars, starch) and secondary (e.g., tannins, phenolic glycosides) foliar chemistry of Populus and Betula species, and identifies conditions necessary for obtaining reliable quantitative data. We developed calibrations with high predictive power (residual predictive deviations?≤?7.4) by relating phytochemical concentrations determined with classical analytical methods (e.g., spectrophotometric assays, liquid chromatography) to NIR spectra, using modified partial least squares regression. We determine that NIRS, although less sensitive and precise than classical methods for some compounds, provides useful predictions in a much faster, less expensive manner than do classical methods.
Graphical abstract
Near-infrared reflectance spectroscopy with calibrations based on modified partial least squares regression can provide quantitative measurements of foliar nitrogen, carbohydrate, tannin, and phenolic glycoside content in poplar and birch  相似文献   
2.
During the last six years several incidents have occurred with dioxins in feed, stressing the need for rapid screening methods for these compounds. The most recent incident was the contamination of bakery waste used for animal feed due to the use of waste wood for drying of the material. In addition to Germany, the material was also shipped to the Netherlands. Levels up to 12 ng TEQ/kg have been detected, being about 15 times over the current limit of 0.75 ng TEQ/kg. In the Netherlands a combined strategy of screening with the CALUX-bioassay and the HRGC/HRMS confirmatory method was used to rapidly control the incident. Pigs were contaminated by the incident but only to a very limited extent. Despite the rather low limits for pig meat, the CALUX bioassay showed excellent performance, once again confirming the value of this assay.  相似文献   
3.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   
4.
In this study, molecular dynamics simulations were carried out on Lys- and Arg-containing Ala-based peptides (i.e. Ace-(AAAAK)(n)A-NH(2) and Ace-(AAAAR)(n)A-NH(2), where n=1-4), in order to explore and characterize their folding processes. For the oligopeptides, the evolution of α-helical structure with regard to the whole conformation, as well as to each residue was investigated, and the helix-forming propensities were characterized. On the basis of the helicity curves, representing the alteration of average helicity as a function of time, the typical time values describing the folding processes and subprocesses were identified. In the case of each peptide, the evolution and role of helix-stabilizing, non-local and side-chain-to-backbone H-bonds were examined. The appearing i←i+4 H-bonds pointed out the role of these interactions in the stabilization of α-helical conformations, while the occurring i←i+3 H-bonds indicated the presence of β-turn or 3(10)-helical structures. Studying the formation and role of non-local and side-chain-to-backbone H-bonds led to the observation that these types of interactions produced an effect on the evolution of helical conformations, as well as on the folding processes.  相似文献   
5.
Biological assays at the single molecule level are crucial to fundamental studies of DNA-protein mechanisms. In order to cater for high throughput applications, one area of immense research potential is single-molecule bioassays where miniaturized devices are developed to perform rapid and effective biological reactions and analyses. With the success of various emerging technologies for engineering miniaturized structures down to the nanoscale level, supported by specialized equipment for detection, many investigations in the field of life science that were once thought impossible can now be actively explored. In this review, the significance of downscaling to the single-molecule level is firstly presented in selected examples, with the focus placed on restriction enzyme assays. To determine the effectiveness of single-molecule restriction enzyme reactions, simple and direct analytical methods based on DNA stretching have often been reliably employed. DNA stretching can be realized based on a number of working principles related to the physical forces exerted on the DNA samples. We then discuss two examples of a nanochannel system and a microchamber system where single-molecule restriction enzyme digestion and DNA stretching have been integrated, which possess prospective capabilities of developing into highly sensitive and high-throughput restriction enzyme assays. Finally, we take a brief look at the general trends in technological development in this field by comparing the advantages and disadvantages of performing assays at bulk, microscale and single-molecule levels. Figure Minaturization of Restriction Enzyme Assays and DNA Stretching  相似文献   
6.
CsPbBr3 nanocrystals (NCs) encapsulated in a transparent polystyrene (PS) fiber matrix (CsPbBr3@PS) have been synthesized to protect the NCs. The ultrafast charge delocalization dynamics of the embedded NCs have been demonstrated, and the results are compared with the pristine CsPbBr3 in toluene. The electrospinning method was employed for the preparation of CsPbBr3@PS fibers by using a polystyrene solution doped with pre-synthesized CsPbBr3 and characterized by XRD, HRTEM, and X-ray photoelectron spectroscopy (XPS). Energy level diagrams of CsPbBr3 and PS suggest that CsPbBr3@PS fibers make a type I core–shell structure. The carrier cooling for CsPbBr3@PS fibers is found to be much slower than pure CsPbBr3 NCs. This observation suggests that photoexcited electrons from CsPbBr3 NCs get delocalized from the conduction band of the perovskite to lowest unoccupied molecular orbital (LUMO) of the PS fiber matrix. The CsPbBr3@PS fibers possess remarkable stability under ambient conditions as well as in water over months. The clear understanding of charge carrier relaxation dynamics of CsPbBr3 confined in PS fibers could help to design robust optoelectronic devices.  相似文献   
7.
Symmetrical primary l,n-diols, HO(CH2)nOH, of any chain length from n = 2-10, can be selectively monobenzylated via sequential treatment with dibutyltin oxide and benzyl bromide.  相似文献   
8.
The food-related isothiocyanate sulforaphane (SFN), a hydrolysis product of the secondary plant metabolite glucoraphanin, has been revealed to have cancer-preventive activity in experimental animals. However, these studies have often provided inconsistent results with regard to bioavailability, bioaccessibility, and outcome. This might be because the endogenous biotransformation of SFN metabolites to the structurally related erucin (ERN) metabolites has often not been taken into account. In this work, a fully validated liquid chromatography tandem mass spectrometry (LC–MS–MS) method was developed for the simultaneous determination of SFN and ERN metabolites in a variety of biological matrices. To reveal the importance of the biotransformation pathway, matrices including plasma, urine, liver, and kidney samples from mice and cell lysates derived from colon-cancer cell lines were included in this study. The LC–MS–MS method provides limits of detection from 1 nmol L?1 to 25 nmol L?1 and a mean recovery of 99 %. The intra and interday imprecision values are in the range 1–10 % and 2–13 %, respectively. Using LC–MS–MS, SFN and ERN metabolites were quantified in different matrices. The assay was successfully used to determine the biotransformation in all biological samples mentioned above. For a comprehensive analysis and evaluation of the potential health effects of SFN, it is necessary to consider all metabolites, including those formed by biotransformation of SFN to ERN and vice versa. Therefore, a sensitive and robust LC–MS–MS method was validated for the simultaneous quantification of mercapturic-acid-pathway metabolites of SFN and ERN.
Graphical Abstract Biotransformation of sulforaphane and erucin metabolites in mice and cell culture
  相似文献   
9.
The ability to measure environmental contaminants in biological tissues and fluids is important in the characterization of exposure. However, the analysis of certain contaminants in these matrices presents significant challenges. Perchlorate (ClO4) has emerged as a potential contaminant of concern primarily in drinking water and also in contaminated food. Significant advances have been made in the analysis of perchlorate in environmental matrices (water, soil) by ion chromatography (IC). In contrast, the analysis of perchlorate in extracts of biological tissues and fluids (vegetation, organs, milk, blood, urine, etc.) presents several challenges including small sample sizes, extracts with high matrix conductivity, and co-elution of other ions during IC analysis. To be able to detect low concentrations of perchlorate in biological samples, interferences must be removed or minimized, such as through the use of preparative chromatography cleanup techniques and/or alternative analytical methods less susceptible to common interferences (preconcentration or mass spectrometric detection). We present discussion and examples of the challenges encountered in the analysis of tissue extracts and fluids for perchlorate by IC and how some of those analytical challenges have been overcome.  相似文献   
10.
The kinetics of chlorine interactions with ice at temperatures between 103 and 165 K have been studied using molecular beam techniques. The Cl(2) trapping probability is found to be unity at thermal incident energies, and trapping is followed by rapid desorption. The residence time on the surface is less than 25 microg at temperatures above 135 K and approaches 1 s around 100 K. Rate constants for desorption are determined for temperatures below 135 K. The desorption kinetics follow the Arrhenius equation, and activation energies of 0.24 +/- 0.03 and 0.31 +/- 0.01 eV, with corresponding preexponential factors of 10(12.08+/-1.19) and 10(16.52+/-0.38) s(-1), are determined. At least two different Cl(2) binding sites are concluded to exist on the ice surface. The observed activation energies are likely to be the Cl(2)-ice binding energies for these states, and the Cl(2)-surface interactions are concluded to be stronger than earlier theoretical estimates. The surface coverage of Cl(2) on ice under stratospheric conditions is estimated to be negligible, in agreement with earlier work.  相似文献   
1 [2] [3] [4] [5] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号