首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   2篇
化学   37篇
物理学   12篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2003年   1篇
排序方式: 共有49条查询结果,搜索用时 203 毫秒
1.
The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.  相似文献   
2.
Composites comprised of chitosan (CS) and multiwalled carbon nanotubes (MWCNTs) were fabricated by milling and ultrasonication dispersion methods. Scanning electron microscopy images showed homogeneous dispersion of MWCNTs throughout the CS matrix for samples prepared by either ultrasonication or milling methods. Further, the crystallinity of the CS component was found to decrease with the addition of MWCNTs, although the decomposition temperature and the storage modulus (E′) of the samples were improved. The decomposition temperature for the composite prepared by milling was 7°C higher than that by the ultrasonication. Meanwhile, the E′ decreased relatively slowly with temperature in the dynamic mechanical analysis measurements. In addition, IR analysis implied an interaction between CS and MWCNTs, which likely originated from hydrogen bonds between the amino, hydroxyl, and carboxyl groups of the two components. Compared with the ultrasonication, milling was more effective to promote the formation of the hydrogen bonds between CS and the MWCNTs and thus enhance the thermal stability of CS.  相似文献   
3.
The effect of surface hydrophobicity and side-chain variation on xyloglucan adsorption onto cellulose microfibrils (CMF) is investigated via molecular dynamics simulations. A molecular model of CMF with (100), (010), (1–10), (110) and (200) crystal faces was built. We considered xylogluco-oligosaccharides (XGO) with three repeating units, namely (XXXG)3, (XXLG)3, and (XXFG)3 (where each (1,4)-β-d-glucosyl residue in the backbone is given a one-letter code according to its substituents: G = β-d-Glc; X = α-d-Xyl-(1,6)-β-d-Glc; L = β-d-Gal-(1,2)-α-d-Xyl-(1,6)-β-d-Glc; F = α-l-Fuc-(1,2)-β-d-Gal-(1,2)-α-d-Xyl-(1,6)-β-d-Glc). Our work shows that (XXXG)3 binds more favorably to the CMF (100) and (200) hydrophobic surfaces than to the (110), (010) and (1–10) hydrophilic surfaces. The origin of this behavior is attributed to the topography of hydrophobic CMF surface, which stabilizes (XXXG)3 in flat conformation. In contrast, on the rough hydrophilic CMF surface (XXXG)3 adopts a less favorable random-coil conformation to facilitate more hydrogen bonds with the surface. Extending the xyloglucan side chains from (XXXG)3 to (XXLG)3 hinders their stacking on the CMF hydrophobic surface. For (XXFG)3, the interaction with the hydrophobic surface is as strong as (XXXG)3. All three XGOs have similar binding to the hydrophilic surface. Steered molecular dynamics simulation was performed on an adhesive model where (XXXG)3 was sandwiched between two CMF hydrophobic surfaces. Our analysis suggests that this sandwich structure might help provide mechanical strength for plant cell walls. Our study relates to a recently revised model of primary cell walls in which extensibility is largely determined by xyloglucan located in limited regions of tight contact between CMFs.  相似文献   
4.
A simple approach for photonic generation of a tunable microwave signal is proposed and successfully demonstrated. By mixing the output from a single-longitudinal-mode Brillouin fiber ring laser with the reflected laser pump at photodetector, a microwave signal at the Brillouin shift can be obtained. Since the Brillouin shift can be changed by tuning the pump wavelength, tunable microwave can be generated. As a result a microwave signal tunable from 10.39 to 10.67 GHz has been achieved, with linewidth less than 600 KHz.  相似文献   
5.
Co(OH)2 nanoparticles were synthesized using only CoSO4·7H2O and NaOH as reactants without other auxiliary reagents via a simple, low-cost and practical ball-milling technique and investigated as the active electrode materials for supercapacitors. The structure and morphology of the resulting Co(OH)2 samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The observations revealed the formation of brucite-like phase of β-Co(OH)2, which had an irregular sphere-like shape with an average size of 50-100 nm. When investigated as electrode materials for supercapacitors, the β-Co(OH)2 exhibited good energy-storage performances in terms of high specific capacitance of 599 F g−1 and excellent capacity retention, suggesting its potential application in the electrode material for supercapacitors.  相似文献   
6.
Hydrogen bonds exist in many polymer systems and play a large role in the physical and chemical properties. In this study, nylon-6, which consists of repeated amide groups and contains large number of hydrogen bonds, is chosen as an example. Meanwhile, the oxidized unzipped MWCNTs (μCNTs) with oxygenated species such as carboxyl and hydroxyl groups are used as mediator to regulate the crystallization process of nylon-6 thin films. In-site experimental techniques, including Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and polarized optical microscopy were utilized to get more direct insights on the crystallization mechanism of nylon-6 and μCNTs systems.  相似文献   
7.
We report on a novel graphene-based nanoarchitecture modified with plasma-polymerized propargylamine (G-PpPG) and its application in electrochemical sensors for DNA. Films of G-PpPG were characterized by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. The presence of graphene enhances the electrochemical activity of the films, and the high density of amino groups (deposited at a low plasma input power) on their surface assists in the immobilization of probe DNA on the water-swollen polymeric network. By contrast, the degree of hybridization of the total complementary target DNA to the probe DNA remains unchanged when G-PpPG nanofilms prepared at higher input power. No substantial non-specific adsorption of totally mismatched target DNA on the polymer films is observed because of the complete coverage of the probe DNA. The detection limit for total complementary target DNA is approximately 1.84 nmol?·?L?1. The dynamic range extends from 0.1 to 1,000 nmol?·?L?1. The new nanocomposite may also be used to immobilize other probe DNA sequences, and this makes the approach potentially applicable to the detection of other oligomers. Figure
Preparing the DNA sensor made from the graphene-based nanoarchitecture modified by using PpPG (G-PpPG) includes the following processes: (a) Modifying the Au electrode with the graphene nanosheet, (b) depositing the PpPG film onto the Au electrode coated with graphene, (c) immobilizing the probe DNA onto the G-PpPG film, and (d) hybridizing the MM0 target with the G-PpPG film immobilized with P1  相似文献   
8.
The aim of this investigation is to obtain a polymer-based hybrid material with biodegradability, biocompatibility, and good mechanical properties and this object was realized via. in-situ introduction of the unmodified calcium carbonate (CaCO3) into a poly(l-lactic acid) (PLLA) matrix. As verified by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), the hybrid films which possesses a uniform dispersion of calcium carbonate CaCO3 in nano-meter scale, mechanically robustness and thermal stability could be fabricated by a mineralization-alike process. For example, the storage modulus increases from 441 MPa of neat PLLA to 1034 MPa of hybrid film containing 2% (w/w) CaCO3. In addition, the hybrid films display a significant improvement in its UV-exposure resistance.  相似文献   
9.
On-surface metal-organic coordination provides a promising way for synthesizing different two-dimensional lattice structures that have been predicted to possess exotic electronic properties. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we studied the supramolecular self-assembly of 9,10-dicyanoanthracene (DCA) molecules on the Au(111) surface. Close-packed islands of DCA molecules and Au-DCA metal-organic coordination structures coexist on the Au(111) surface. Ordered DCA3Au2 metal-organic networks have a structure combining a honeycomb lattice of Au atoms with a kagome lattice of DCA molecules. Low-temperature STS experiments demonstrate the presence of a delocalized electronic state containing contributions from both the gold atom states and the lowest unoccupied molecular orbital of the DCA molecules. These findings are important for the future search of topological phases in metal-organic networks combining honeycomb and kagome lattices with strong spin-orbit coupling in heavy metal atoms.  相似文献   
10.
Superhydrophobic structure was prepared on copper foil via a facile solution-immersion method. Thus slice-like Cu2(OH)3NO3 crystal was prepared on the surface of the copper foil by sequential immersing in an aqueous solution of sodium hydroxide and cupric nitrate. And the superhydrophobic structure was obtained by modifying the slice-like Cu2(OH)3NO3 crystal with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS-17). The morphologies, chemical compositions and states, and hydrophobicity of the surface-modifying films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement. Moreover, the thermal stability of the slice-like structure was also evaluated using thermogravimetric analysis (TGA). It was found that roughening of the copper foil surface helped to increase the hydrophobicity to some extent, but no superhydrophobicity was obtained unless the slice-like Cu2(OH)3NO3 crystal formed on the Cu substrate was modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Besides, the superhydrophobicity of the FAS-17-modified slice-like Cu2(OH)3NO3 structure was closely related to the surface morphology. And this hydrophobic structure retained good superhydrophobic stability at elevated temperature and in long-term storage as well, which should be critical to the application of Cu-matrix materials in engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号