首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   4篇
数学   1篇
  2013年   1篇
  2007年   1篇
  2005年   2篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Analytical methodology was developed and validated for the determination of spiroxamine residues in grapes, must, and wine by gas chromatography/ion trap-mass spectrometry (GC/IT-MS). Two extraction procedures were used: the first involved grapes, must, and wine extraction with alkaline cyclohexane-dichloromethane (9 + 1, v/v) solution, and the second grape extraction with acetone, dichloromethane, and petroleum ether. In both procedures, the extract was centrifuged, evaporated to dryness, and reconstituted in cyclohexane or 2,2,4-trimethylpentane-toluene (9 + 1, v/v), respectively. Spiroxamine diastereomers A and B were determined by GC/IT-MS, and a matrix effect was observed in the case of grapes but not in must and wine. Recovery of spiroxamine from fortified samples at 0.02 to 5.0 mg/kg ranged from 78-102% for grapes and must, with relative standard deviation (RSD) <13%; for red and white wines, recoveries ranged from 90 to 101% with RSD <9%. The limit of quantification was 0.02 mg/kg for grapes, must, and wine or 0.10 mg/kg for grapes, depending on the extraction procedure used.  相似文献   
2.
Trifloxystrobin, fenhexamid and famoxadone belong to the generation of fungicides acting against a broad spectrum of fungi and widely used in Integrated Pest Management strategies in different agricultural crops but mainly in viticulture. In the present work, a gas chromatographic (GC) method for their determination was developed and validated on tomato, grape and wine matrices. The method was based on a simple one step liquid-liquid microextraction with cyclohexane/dichloromethane (9+1, v/v) and determination of fungicides by gas chromatography with nitrogen phosphorous (NP-) and electron capture (EC-) detection, and ion trap mass spectrometry (ITMS) for confirmation. The method was validated by recovery experiments, assessment of matrix effect and calculation of the associated uncertainty. Recoveries for GC-NPD and GC-ECD were found in the range of 81-102% with RSD <12%, while matrix-matched calibration solutions were imposed for quantification. LOQs ranged from 0.005 to 0.05 mg/kg and 0.01 to 0.10 mg/kg for the GC-ECD and GC-NPD, respectively, depending on the sensitivity of each compound with trifloxystrobin being the most sensitive. The expanded uncertainty, calculated for a sample concentration of 0.10 mg/kg, ranged from 4.8 to 13% for the GC-ECD and from 5.4 to 29% for the GC-NPD. The concentration levels for famoxadone residues found in tomato and grape samples from field experiments were clearly below the EU established MRL values, thus causing no problems in terms of food safety.  相似文献   
3.
When a time harmonic electromagnetic wave impinges on a slaba certain portion of the wave creates heat within the slab throughdipolar and ohmic heating. The electrical and thermal propertiesof the material dictate the dynamical nature of the heatingprocess, as well as the steady-state temperature profile. Thematerial considered here is a slab of fluid. We consider thecase where the fluid is bounded by thin rigid layers of transparentmaterial. The steady-state heating profile governs the typesof convective motions that can occur and also affects the stabilitycharacteristics of temperature, pressure and velocity perturbationsintroduced in the slab. The main objective here is to examinesuch stability characteristics, initially in the linear regime.Both rigid-rigid and rigid-free configurations are considered.  相似文献   
4.
The rate of decline of fenitrothion residues was investigated in leaves and soil of vineyard over 2 months after treatment with two different kinds of commercial formulations: emulsifiable concentrate (EC) and microencapsulate (ME). Fenitrothion residues were determined with GC-NPD after acetone extraction of soil and leaves. The measured initial deposits in soil and leaves varied between 2.6 and 3.8?mg?kg?1 and between 89 and 101?mg?kg?1, respectively. Fenitrothion residues in soil dropped at 0.1–0.2?mg?kg?1 after 60 days following application with EC formulation showing a more rapid decline than the ME. Fenitrothion residues in leaves from ME formulation treatment showed a longer persistence and lower decline rate than those from EC formulation. During the experimental period, fenitrothion remaining in leaves from ME application was 10 times more than from the EC one. Mathematically defined decline curves were established by determining optimal relationships between fenitrothion residues and time. The RF1st-order and RF1.5th-order equation achieved the best adjustment to the experimental data of fenitrothion dissipation on leaves for the ME and EC formulation, respectively, giving fenitrothion half-lives of about 2–3 days for ME and <1 day for EC formulation. In vineyard soil, the best adjustment to the experimental data for ME and EC formulation was achieved by the 1st-order and 1.5th-order equations, respectively, giving fenitrothion half-lives in soil of about 17–21 days for ME and 5 days for EC formulation.  相似文献   
5.
A method was developed and validated for the determination of residues of the organophosphorus nematicide fosthiazate in soil and water by using reversed-phase liquid chromatography with UV detection. Good recoveries (>85%) of fosthiazate residues were obtained from water samples (drinking water, groundwater, and liquid chromatography water) after passage of 0.5-2 L water through solid-phase extraction (SPE) C-18 cartridges and subsequent elution with ethyl acetate. Residues in soil were extracted with methanol-water (75 + 25, v/v) on a wrist-action shaker, and the extract was cleaned up on C-18 SPE cartridges before analysis. The method was validated by analysis of a range of soils with different physicochemical characteristics; recoveries exceeded 87% at fortification levels ranging from 0.02 to 5.0 mg/kg. The precision values obtained for the method, expressed as repeatability and reproducibility, were satisfactory (<11%). Fosthiazate detection limits were 0.025 microg/L and 0.005 mg/kg for water and soil samples, respectively. The decline in the levels of fosthiazate residues in soil was measured after application of fosthiazate to protected tomato cultivation. The dissipation of fosthiazate residues followed first-order kinetics with a calculated half-life of 21 days.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号