首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   3篇
力学   1篇
数学   1篇
物理学   20篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  1999年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
6.
The hydrogen storage capacity in nanostructured carbon materials can be increased by atomic hydrogen spillover from a supported catalyst. A simple and effective technique was developed to build carbon bridges that serve to improve contact between a spillover source and a secondary receptor. In this work, a supported catalyst (Pd-C) served as the source of hydrogen atoms via dissociation and primary spillover and AX-21 or single-walled carbon nanotubes (SWNTs) were secondary spillover receptors. By carbonizing a bridge-forming precursor in the presence of the components, the hydrogen adsorption amount was increased by a factor of 2.9 for the AX-21 receptor and 1.6 for the SWNT receptor at 298 K and 100 kPa. Similar results were obtained at 10 MPa, indicating that the enhancement factor is a weak function of pressure. The AX-21 receptor with carbon bridges had the highest absolute capacity of 1.8 wt % at 298 K and 10 MPa. Reversibility was demonstrated through desorption and readsorption at 298 K. The bridge-building process appears to be receptor specific, and optimization may yield even greater enhancement. Using this technique, enhancements in storage of up to 17-fold on other carbon-based materials have been observed and will be reported elsewhere shortly.  相似文献   
7.
8.
Spillover of hydrogen on nanostructured carbons is a phenomenon that is critical to understand in order to produce efficient hydrogen storage adsorbents for fuel cell applications. The spillover and interaction of atomic hydrogen with single-walled carbon nanotubes (SWNTs) is the focus of this combined theoretical and experimental work. To understand the spillover mechanism, very low occupancies (i.e., 1 and 2 H atoms adsorbed) on (5,0), (7,0), (9,0) zigzag (semiconducting) SWNTs and a (5,5) armchair (metallic) SWNT, with corresponding diameters of 3.9, 5.5, 7.0, and 6.8 A, were investigated. The adsorption binding energy of H atoms depends on H occupancy, tube diameter, and helicity (or chirality), as well as endohedral (interior) vs exohedral (exterior) binding. Exohedral binding energies are substantially higher than endohedral binding energies due to easier sp(2)-sp(3) transition in hybridization of carbon on exterior walls upon binding. A binding energy as low as -8.9 kcal/mol is obtained for 2H atoms on the exterior wall of a (5, 0) SWNT. The binding energies of H atoms on the metallic SWNT are significantly weaker (about 23 kcal/mol weaker) than that on the semiconductor SWNT, for both endohedral and exohedral adsorption. The binding energy is generally higher on SWNTs of larger diameters, while its dependence on H occupancy is relatively weak except at very low occupancies. Experimental results at 298 K and for pressures up to 10 MPa with a carbon-bridged composite material containing SWNTs demonstrate the presence of multiple adsorption sites based on desorption hysteresis for the spiltover H on SWNTs, and the experimental results were in qualitative agreement with the molecular orbital calculation results.  相似文献   
9.
A procedure is explained to determined the amount of several pairs of diametrical loads applied to the outside boundary of a ring when stresses at selected points of the inside or outside boundaries are known. Coefficients of influence are used, following an approach similar to the one presented in a previous paper. Examples of application are given and the possible increase in precision is shown when the number of points of measurements is larger than the number of loads to be determined.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号