首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   10篇
力学   1篇
物理学   5篇
  2012年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1994年   1篇
  1992年   1篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
Low-temperature laser sintering has been successfully demonstrated to improve the overall conversion efficiency of dye-sensitized solar cells. Mesoporous TiO2 electrodes were prepared from a colloidal solution of TiO2 nanopowders by a laser direct-write technique and then sintered by a quasi-continuous-wave UV laser (λ=355 nm) for the fabrication of dye-sensitized solar cells. The overall conversion efficiency of the cells based on the laser-sintered TiO2 electrodes was double that of the devices with non-laser-treated TiO2 electrodes. This enhancement is attributed to both the removal of organic additives and the improved inter-nanoparticle electrical contacts induced by the laser-sintering process, which led to an increase in porosity and dye-absorption sites in the TiO2 electrodes. PACS 61.80.Ba; 61.46.+w; 73.22.-f; 84.60.Jt  相似文献   
2.
A series of chiral phosphine-phosphite ligands 1-6 have been synthesized and used in the enantioselective palladium-catalyzed reaction of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate as nucleophile. Ligands 1a, 2, 3, 5a, 6a, and 6b have been synthesized starting from racemic tert-butylphenylphosphinoborane. The use of dynamically resolved Li phosphide (-)-sparteine provided the optically pure ligands. Crystals of the allylpalladium (6a) complex were obtained, suitable for X-ray crystal structure determination. The X-ray crystal structure of the allylpalladium (6a) complex revealed a longer palladium-carbon bond distance trans to the phosphine moiety indicating that the attack of the nucleophile takes place at the carbon trans to the phosphine moiety. This was confirmed by the fact that the phosphine moiety did not affect the enantioselectivity directly. Under mild reaction conditions, enantioselectivities up to 83% were obtained (25 degrees C) with ligand 1e. Systematic variation of the ligand bridge and the phosphite moiety showed that the configuration of the product is controlled by the atropisomerism of the biphenyl substituent at the phosphite moiety. The conformation of the biphenyl group, in turn, is controlled by the substituent at the chiral carbon in the bridge. Ligands with large bite angles yielded higher enantioselectivities.  相似文献   
3.
Well-crystallized kaolinite (K) was initially reacted at 60 degrees C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140 degrees C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide and aluminol groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68 degrees orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the aluminosilicate interlayers. Copyright 2000 Academic Press.  相似文献   
4.
Fluorine-doped tin oxide (FTO) thin films have been investigated as an alternative to indium tin oxide anodes in organic photovoltaic devices. The structural, electrical, and optical properties of the FTO films grown by pulsed laser deposition were studied as a function of oxygen deposition pressure. For 400 nm thick FTO films deposited at 300°C and 6.7 Pa of oxygen, an electrical resistivity of 5×10−4 Ω-cm, sheet resistance of 12.5 Ω/, average transmittance of 87% in the visible range, and optical band gap of 4.25 eV were obtained. Organic photovoltaic (OPV) cells based on poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunctions were prepared on FTO/glass electrodes and the device performance was investigated as a function of FTO film thickness. OPV cells fabricated on the optimum FTO anodes (∼300–600 nm thick) exhibited power conversion efficiencies of ∼3%, which is comparable to the same device made on commercial ITO/glass electrodes (3.4%).  相似文献   
5.
Reactions of boron atoms and clusters with NO molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. The reaction products were identified by isotopic substitution ((10)B, (11)B, (15)N(16)O, (14)N(18)O, and mixtures) and comparison with density functional calculations of isotopic frequencies. In solid argon, boron atoms spontaneously reacted with NO to form the insertion molecule NBO. The BNBO and OBNNO molecules were formed by the B and NO addition reactions to NBO. The linear BBNO and BBBNO nitrosyls also were formed spontaneously on annealing. These molecules photochemically rearranged to the more stable BNBO and BNBBO isomers, which have linear polyyne-like structures. The photosensitive OBNNO molecule decomposed to form the NNBO(2) van der Waals complex. In addition, the novel OBON diradical was also formed on photolysis in high-concentration NO experiments.  相似文献   
6.
Reactions of laser-ablated Th and U atoms with C(2)H(2) during condensation with excess argon at 7 K give several new product species. The metallacyclopropene, inserted hydride, and actinide ethynyl are identified from isotopic frequencies and relativistic DFT calculations. The higher-energy vinylidine isomer was not observed. These actinide metallacyclopropenes exhibit substantially stronger bonding interactions than found recently for the Pd and Pt metals. In the case of Th(C(2)H(2)) the argon matrix interaction is strong enough to reverse the computed order of states (MR-CISD) in favor of a triplet ground state for the (Ar)(n)(Th(C(2)H(2))) complex. The nature of the electronic interactions between various metal atoms and acetylene is compared and the origin of the particularly strong interaction for U and Th is traced to the higher energy of their 6d orbitals. The ThCCH and UCCH actinide ethynyl products are also observed and characterized by C[triple bond]C stretching modes 38+/-2 cm(-1) lower than acetylene itself.  相似文献   
7.
The electronic structures of two series of end-capped thiophene oligomers, one set containing the electron-deficient dimesitylboryl end-cap and one containing the electron-rich triaryl amine end-cap, have been modeled using semiempirical quantum chemical calculations and the results used to assign features in the photoemission spectra of the materials in the condensed phase. For the thiophene oligomers end-capped with the electron-deficient dimesitylboryl moieties, the energy of the occupied frontier orbitals is largely governed by pi-type orbitals of the thiophene repeat units in the oligothiophene main chain. Conversely, in oligomers end-capped with electron-rich triarylamine moieties, the occupied frontier orbital energies are largely governed by orbital states of heavily mixed character associated with thiophene pi-type systems and the low-lying nitrogen lone pairs of end capping groups.  相似文献   
8.
We elucidate photoexcitation dynamics in C(60) and zinc phthalocyanine (ZnPc) from picoseconds to milliseconds by transient absorption and time-resolved terahertz spectroscopy. Autoionization of C(60) is a precursor to photocarrier generation. Decay of the terahertz signal is due to decreasing photocarrier mobility over the first 20 ps and thereafter reflects recombination dynamics. Singlet diffusion rates in C(60) are determined by modeling the rise of ground state bleaching of ZnPc absorption following C(60) excitation. Recombination dynamics transform from bimolecular to monomolecular as the layer thickness is reduced, revealing a metastable exciplex at the C(60)/ZnPc interface with a lifetime of 150 μs.  相似文献   
9.
The mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent fluid is analyzed using similarity solution technique. Wall temperature and stretching velocity are assumed to have specific exponential function forms. The influence of buoyancy along with viscous dissipation on the convective transport in the boundary layer region is analyzed in both aiding and opposing flow situations. The flow is governed by the mixed convection parameter Gr/Re2. The velocity and temperature inside the boundary layer are observed to be influenced by the parameters like Prandtl number Pr, Gebhart number Gb. Significant changes are observed in non-dimensional skin friction and heat transfer coefficients due to viscous dissipation in the medium. The flow and temperature distributions inside the boundary layer are analyzed and the results for non-dimensional skin friction and heat transfer coefficients are discussed through computer generated plots.  相似文献   
10.
We report on a detailed quantum-chemical study of the geometric structure and electronic properties of 2,5-bis(6(')-(2('),2(")-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy) and 2,5-di- (3-biphenyl)-1,1-dimethyl-3,4-diphenylsilole (PPSPP). These molecular systems are attractive candidates for application as electron-transport materials in organic light-emitting devices. Density Functional Theory (DFT), time-dependent DFT, and correlated semiempirical (ZINDO/CIS) calculations are carried out in order to evaluate parameters determining electron-transport and optical characteristics. Experimental data show that PyPySPyPy possesses an electron-transport mobility that is significantly greater than PPSPP, while PPSPP has a significantly larger photoluminescence quantum yield; however, the theoretical results indicate that the two systems undergo similar geometric transformations upon reduction and have comparable molecular orbital structures and energies. This suggests that intermolecular interactions (solid-state packing, electronic coupling) play significant roles in the contrasting performance of these two molecular systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号