首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   19篇
  国内免费   1篇
化学   447篇
晶体学   5篇
力学   7篇
数学   47篇
物理学   92篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   13篇
  2015年   19篇
  2014年   19篇
  2013年   28篇
  2012年   36篇
  2011年   36篇
  2010年   24篇
  2009年   32篇
  2008年   36篇
  2007年   30篇
  2006年   41篇
  2005年   39篇
  2004年   26篇
  2003年   30篇
  2002年   18篇
  2001年   6篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1969年   2篇
  1967年   5篇
  1965年   3篇
排序方式: 共有598条查询结果,搜索用时 93 毫秒
1.
Solvent‐dependent ultraviolet–visible (UV–vis) absorption and Stokes shifts including strong hydrogen‐bond‐donating (HBD) solvents such as 2,2,2‐trifluoroethanol and 1,1,1,3,3,3‐hexafluoro‐2‐propanol of two coumarine dyes (Co 151 and Co 153) were analyzed with multiple‐square analyses of linear solvation energy relationships and the Kamlet–Taft solvent parameter set to α (HBD capacity), β (hydrogen‐bond‐accepting capacity), and π* (dipolarity/polarizability). The UV–vis absorption and emission spectra of Co 151 and Co 153 were measured when adsorbed on various polysaccharides such as different cellulose batches, carboxymethylcelluloses with different degrees of substitution, and chitine. As a result of this evaluation, Co 153 is recommended as an alternative UV–vis probe for evaluating the dipolarity/polarizability of cellulose and cellulose derivates. Multiple adsorption of Co 153 on Linters cellulose took place indicating a wide‐surface polarity distribution, which makes the determination of a rigid polarity parameter questionable. Thus, fluorescence measurements of adsorbed Co 153 are suitable to detect inhomogenities on a surface but not for the determination of empirical polarity parameters. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1210–1218, 2003  相似文献   
2.
3.
4.
Predissociation spectra of the H5O2+.Ar(1,2) cluster ions are reported in the 1000-1900 cm(-1) region. The weakly bound argon atoms enable investigation of the complex in a linear action mode, and the resulting spectra are much simpler than those reported previously in this region [Asmis et al., Science 299, 1375 (2003) and Fridgen et al., J. Phys. Chem. A 108, 9008 (2004)], which were obtained using infrared multiphoton dissociation of the bare complex. The observed spectrum consists of two relatively narrow bands at 1080 and 1770 cm(-1) that are likely due to excitation of the shared proton and intramolecular bending vibrations of the two water molecules, respectively. The narrow linewidths and relatively small (60 cm(-1)) perturbation introduced by the addition of a second argon atom indicate that the basic "zundel" character of the H5O2+ ion survives upon complexation.  相似文献   
5.
Using reaction rate data collected in aprotic solvents, we have determined that the Baylis-Hillman rate-determining step is second order in aldehyde and first order in DABCO and acrylate. On the basis of these data, we have proposed a new mechanism involving a hemiacetal intermediate. The proposed mechanism was then supported using two different kinetic isotope experiments.  相似文献   
6.
Solubilization environment afforded by several of the novel allyl glycidyl ether-modified methylhydrosiloxane polymers are investigated using a common polycyclic aromatic hydrocarbon fluorescence probe, pyrene. The backbone of the polymer has been modified by the addition of an alkyl chain of varying length (either C8, C12, or C18) and to differing degrees of substitution. The nomenclature adopted for the purposes of these studies is as follows: "AGENT" represents the backbone polymer with no alkyl substitution, and "OAGENT", "DAGENT", and "SAGENT" are substituted with n-octyl, n-dodecyl, and n-octadecyl, respectively. The percentage of alkyl substitution is designated as 10, 15, and 20%. The pyrene polarity scale (defined as the ratio of the intensity of peak I to peak III) was used to determine the relative dipolarity of the cybotactic region provided by approximately 1 w/w% aqueous polymer solutions compared to 10 mM sodium dodecylsulfate (SDS) micellar solution. Results indicate that 10-15% DAGENT afforded the most hydrophobic solubilization site, followed by 15% OAGENT and 15% SAGENT. In addition, as the degree of alkyl substitution of DAGENT increased from 10 to 20%, the cybotactic region appeared to become more hydrophobic. Furthermore, a deeper investigation into the relative size of the solubilization site revealed that all alkyl-substituted polymers promoted excimer formation at relatively low pyrene concentrations, indicating the possibility of localized concentration enhancement within the solvation pockets and/or compartmentalization of the solute molecules. The pyrene fluorescence excitation data strongly indicates ground-state heterogeneity that is most prominent in AGENT and decreases as the alkyl chain length is increased. This provides a relative sense of the size and shape of the solvation pockets afforded by each polymer solution. An overall analysis of the collected data indicated that these alkyl-substituted polymers may provide a more selective and efficient pseudostationary phase in electrokinetic chromatography with better solvation capacity for hydrophobic compounds compared to SDS.  相似文献   
7.
A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (−1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could consider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model''s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.

Prediction of bond dissociation energies for charged molecules with a graph neural network enabled by global molecular features and reaction difference features between products and reactants.  相似文献   
8.
Accurate data on transport properties such as viscosity are essential in plant and process design involving ionic liquids. In this study, we determined the absolute viscosity of the ionic liquid + water system at water mole fractions from 0 to 0.25 for three 1-alkyl-3-methylimidazolium ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide. In each case, the excimer to monomer ratio for 1,m-bis(1-pyrenyl)alkanes (m= 3 or 10) was found to increase linearly with the mole fraction of water. Of the probes studied only PRODAN and rhodamine 6G, both of which have the ability to participate in hydrogen bonding, exhibited Perrin hydrodynamic behavior in the lower viscosity bis(trifluoromethane sulfonyl)imides. As a result, these probes allow for the extrapolation of the absolute viscosity of the ionic liquid mixture from the experimental fluorescence steady-state polarization values.  相似文献   
9.
Multiple deuterium exchange between DMSO-d6 and amide hydrogens in two hexaamido cryptand fluoride receptors has been verified by 19F and 2H NMR and FAB mass spectral studies. Structural results for one of the complexes indicate a tricapped trigonal prism hydrogen bond coordination geometry around an encapsulated fluoride, with hydrogen bonds from fluoride to six amide and three phenyl hydrogens.  相似文献   
10.
This review covers recent progress in polyelectrolyte multilayer (PEM) coatings applied to analytical separations using open-tubular capillary electrochromatography (OT-CEC). The simple preparation procedure involved in the PEM approach has provided some attractive features over other modes of capillary electrophoresis-based separations including packed column capillary electrochromatography (PC-CEC) and micellar electrokinetic chromatography (MEKC). PEM coatings have been used to alleviate the adsorption of basic analytes, to improve separations, and to improve the stability of the electroosmotic flow. Fundamental aspects of PEM coatings on surfaces and analytical separation platforms are briefly outlined in this review. In addition, applications of PEM coatings to fused-silica capillaries or microchip separation devices for the separation of small achiral or chiral analytes, as well as large biomolecules, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号