首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   4篇
晶体学   1篇
物理学   1篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
  2006年   1篇
  1998年   1篇
  1973年   1篇
排序方式: 共有6条查询结果,搜索用时 234 毫秒
1
1.
The novel NAD+-linked opine dehydrogenase from a soil isolate Arthrobacter sp. strain 1C belongs to an enzyme superfamily whose members exhibit quite diverse substrate specificites. Crystals of this opine dehydrogenase, obtained in the presence or absence of co-factor and substrates, have been shown to diffract to beyond 1.8 ? resolution. X-ray precession photographs have established that the crystals belong to space group P21212, with cell parameters a = 104.9, b = 80.0, c = 45.5 ? and a single subunit in the asymmetric unit. The elucidation of the three-dimensional structure of this enzyme will provide a structural framework for this novel class of dehydrogenases to enable a comparison to be made with other enzyme families and also as the basis for mutagenesis experiments directed towards the production of natural and synthetic opine-type compounds containing two chiral centres.  相似文献   
2.
Fully stretched DNA molecules are becoming a fundamental component of new systems for comprehensive genome analysis. Among a number of approaches for elongating DNA molecules, nanofluidic molecular confinement has received enormous attentions from physical and biological communities for the last several years. Here we demonstrate a well-optimized condition that a DNA molecule can stretch almost to its full contour length: the average stretch is 19.1 μm ± 1.1 μm for YOYO-1 stained λ DNA (21.8 μm contour length) in 250 nm × 400 nm channel, which is the longest stretch value ever reported in any nanochannels or nanoslits. In addition, based on Odijk's polymer physics theory, we interpret our experimental findings as a function of channel dimensions and ionic strengths. Furthermore, we develop a Monte Carlo simulation approach using a primitive model for the rigorous understanding of DNA confinement effects. Collectively, we present a more complete understanding of nanochannel confined DNA stretching via the comparisons to computer simulation results and Odijk's polymer physics theory.  相似文献   
3.
To understand structural variation for personal genomics, an extensive ensemble of large DNA molecules will be required to span large structural variations. Nanocoding, a whole‐genome analysis platform, can analyze large DNA molecules for the construction of physical restriction maps of entire genomes. However, handling of large DNA is difficult and a system is needed to concentrate large DNA molecules, while keeping the molecules intact. Insert technology was developed to protect large DNA molecules during routine cell lysis and molecular biology techniques. However, eluting and concentrating DNA molecules has been difficult in the past. Utilizing 3D printed mesofluidic device, a proof of principle system was developed to elute and concentrate lambda DNA molecules at the interface between a solution and a poly‐acrylamide roadblock. The matrix allowed buffer solution to move through the pores in the matrix; however, it slowed down the progression of DNA in the matrix, since the molecules were so large and the pore size was small. Using fluorescence intensity of the insert, 84% of DNA was eluted from the insert and 45% of DNA was recovered in solution from the eluted DNA. DNA recovered was digested with a restriction enzyme to determine that the DNA molecules remained full length during the elution and concentration of DNA.  相似文献   
4.
Intercalates of o-, m-, and p-toluidine into α-Zr(HPO4)2 · H2O were prepared and characterized by powder X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. As follows from IR, toludine molecules are protonated in the interlayer space. Toluidine molecules are arranged in a bimolecular way in the intercalates containing more than 1.5 toluidine molecules per Zr atom. On the other hand, a monolayer of the toluidine molecules is supposed in the intercalates with less than one toluidine molecule per Zr atom.  相似文献   
5.
The free energy as a function of the reaction coordinate (rc) is the key quantity for the computation of equilibrium and kinetic quantities. When it is considered as the potential of mean force, the problem is the calculation of the mean force for given values of the rc. We reinvestigate the PMCF (potential of mean constraint force) method which applies a constraint to the rc to compute the mean force as the mean negative constraint force and a metric tensor correction. The latter allows for the constraint imposed to the rc and possible artefacts due to multiple constraints of other variables which for practical reasons are often used in numerical simulations. Two main results are obtained that are of theoretical and practical interest. First, the correction term is given a very concise and simple shape which facilitates its interpretation and evaluation. Secondly, a theorem describes various rcs and possible combinations with constraints that can be used without introducing any correction to the constraint force. The results facilitate the computation of free energy by molecular dynamics simulations.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号