首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   17篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 970 毫秒
1.
The site‐specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine‐selective peptide‐cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water‐soluble copper–organoradical conjugate. The method is applicable to the site‐selective cleavage of polypeptides that possess various functional groups. Peptides comprising D ‐amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site‐selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.  相似文献   
2.
A copper‐catalyzed migratory oxidative‐coupling reaction between nitrones and various ethers/amines exhibited high functional‐group tolerance. Even in aqueous media, the reaction proceeded efficiently. For practical use of this catalysis, a unique sequential Huisgen cycloaddition was demonstrated. Mechanistic investigations revealed that the reaction proceeded through oxidative catalytic activation of ethers/amines to afford iminium/oxonium intermediates by concurrent dual one‐electron abstractions by copper(II) and oxyl radicals.  相似文献   
3.
New chiral bidentate diphenylphospholanes were designed targeting a catalytic enantioselective aldol reaction to ketones. Ligands 5l and 5m having cis-2-butenyl and cyclopropyl groups at the linker part, respectively, were identified as effective chiral ligands for a CuF-catalyzed enantioselective aldol reaction to ketones. Catalysts prepared from CuF·3PPh3·2EtOH and these ligands produced ketone aldol products with up to 66% ee, which is promising particularly for this extremely difficult and important catalytic enantioselective carbon-carbon bond forming reaction. The enantioselectivity was strongly dependent on the linker structure. Construction of a deep chiral pocket around the copper metal with stable bidentate chelation is the key to meaningful enantioinduction.  相似文献   
4.
A general catalytic allylation of simple ketoimines was developed using 1 mol % of CuF.3PPh(3) as catalyst, 1.5 mol % of La(O(i)Pr)(3) as the cocatalyst, and stable and nontoxic allylboronic acid pinacol ester as the nucleophile. This reaction constituted a good template for developing the first catalytic enantioselective allylation of ketoimines. In this case, using LiO(i)Pr as the cocatalyst produced higher enantioselectivity and reactivity than La(O(i)Pr)(3). Thus, using the CuF-cyclopentyl-DuPHOS complex (10 mol %) and LiO(i)Pr (30 mol %) in the presence of (t)BuOH (1 equiv) produced high enantioselectivity up to 93% ee from a range of aromatic ketoimines. Mechanistic studies indicated that LiO(i)Pr accelerates the reaction by increasing the concentration of an active nucleophile, allylcopper.  相似文献   
5.
A new synthetic strategy for DNA-enzyme conjugates with a novel architecture was explored using a natural cross-linking catalyst, microbial transglutaminase (MTG). A glutamine-donor substrate peptide of MTG was introduced at the 5-position on the pyrimidine of deoxyuridine triphosphate to prepare a DNA strand with multiple glutamine-donor sites by polymerase chain reaction (PCR). A substrate peptide that contained an MTG-reactive lysine residue was fused to the N terminus of a thermostable alkaline phoshatase from Pyrococcus furiosus (PfuAP) by genetic engineering. By combining enzymatically the substrate moieties of MTG introduced to the DNA template and the recombinant enzyme, a DNA-(enzyme)(n) conjugate with 1:n stoichiometry was successfully obtained. The enzyme/DNA ratio of the conjugate increased as the benzyloxycarbonyl-L-glutaminylglycine (Z-QG) moiety increased in the DNA template. The potential utility of the new conjugate decorated with signaling enzymes was validated in a dot blot hybridization assay. The DNA-(enzyme)(n) probe could clearly detect 10(4) copies of the target nucleic acid with the complementary sequence under harsh hybridization conditions, thereby enabling a simple detection procedure without cumbersome bound/free processes associated with a conventional hapten-antibody reaction-based DNA-detection system.  相似文献   
6.
Chen IH  Oisaki K  Kanai M  Shibasaki M 《Organic letters》2008,10(22):5151-5154
A general catalytic method for the hetero-Diels-Alder reaction between Danishefsky-type siloxy dienes and ketones was developed. Optimum results were produced with a catalyst generated from CuOTf x (C6H6)1/2 and TBAT with Ph 3PO as the catalytic additive. This reaction was extended to an asymmetric variant, using a Cu(I)-Walphos catalyst.  相似文献   
7.
An enantioselective aldol reaction between ketones and ketene silyl acetals is described using CuF-chiral phosphine as a catalyst. The key for high enantioselectivity was the development of a novel ligand derived from Taniaphos combined with the unique accelerative effect of PhBF3K. These conditions are applicable to various substrates such as aromatic, aliphatic, and heteroaromatic ketones. In the case of substituted nucleophiles, the reaction proceeds well. The diastereoselectivity is independent of ketene silyl acetal geometry. This is the first example of a catalytic enantio- and diastereoselective aldol reaction to ketones using ketene silyl acetals.  相似文献   
8.
A general catalytic asymmetric reductive aldol reaction of allenic esters to ketones is described. Two distinct constitutional isomers were selectively produced depending on the reaction conditions. A combination of CuOAc/(R)-DTBM-SEGPHOS/PCy3 as the catalyst predominantly produced gamma-cis-products in high yield with excellent enantioselectivity (up to 99% ee). The reaction was applicable to both aromatic and aliphatic ketones, including unsaturated ketones. On the other hand, CuF-Taniaphos complexes produced alpha-aldol products with high diastereo- and enantioselectivity (up to 84% ee). The new Taniaphos derivative L3, containing di(3,5-xylyl)phosphine and morpholine units, produced optimum results in the alpha-selective reaction. The products are versatile chiral building blocks in organic synthesis. Furthermore, the basic reaction pattern (i.e., conjugate addition-aldol reaction) was extended to a catalytic enantioselective alkylative aldol reaction to ketones using dialkylzinc reagents as the initiator.  相似文献   
9.
A general catalytic asymmetric alkylative aldol reaction is described as a new entry to the catalytic asymmetric multicomponent reaction (CAMCR). Highly functionalized delta-lactones were produced in the presence of a catalytic amount of the Cu(OAc)2-DIFLUORPHOS complex through three-component assembly of dialkylzincs, allenic esters, and unactivated ketones. This CAMCR constructs two C-C bonds and one tetrasubstituted chiral center simultaneously. Conjugate addition of alkylcopper species to an allenic ester produced highly active copper enolate in situ, and the successive asymmetric aldol addition to ketones followed by lactonization afforded the desired products. The addition of MS4A and Lewis base (Ph2S=O, DMSO, or HMPA) is important for obtaining a high yield, with suppression of the undesired alpha-addition pathway. Control/crossover experiments suggest that the addition of a Lewis base facilitated the retro-aldol reaction of the alpha-adducts (proofreading effect). The ketone and copper enolate generated through the retro-aldol reaction were converted to the desired lactone through the gamma-aldol pathway, which was trapped by irreversible lactone formation.  相似文献   
10.
Condensation of 2,5-diethoxyterephthalohydrazide with 1,3,5-triformylbenzene or 1,3,5-tris(4-formylphenyl)benzene yields two new covalent organic frameworks, COF-42 and COF-43, in which the organic building units are linked through hydrazone bonds to form extended two-dimensional porous frameworks. Both materials are highly crystalline, display excellent chemical and thermal stability, and are permanently porous. These new COFs expand the scope of possibilities for this emerging class of porous materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号