首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   4篇
力学   1篇
物理学   2篇
  2021年   1篇
  2012年   1篇
  2005年   1篇
  2000年   2篇
  1994年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A series of chiral phosphine-phosphite ligands 1-6 have been synthesized and used in the enantioselective palladium-catalyzed reaction of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate as nucleophile. Ligands 1a, 2, 3, 5a, 6a, and 6b have been synthesized starting from racemic tert-butylphenylphosphinoborane. The use of dynamically resolved Li phosphide (-)-sparteine provided the optically pure ligands. Crystals of the allylpalladium (6a) complex were obtained, suitable for X-ray crystal structure determination. The X-ray crystal structure of the allylpalladium (6a) complex revealed a longer palladium-carbon bond distance trans to the phosphine moiety indicating that the attack of the nucleophile takes place at the carbon trans to the phosphine moiety. This was confirmed by the fact that the phosphine moiety did not affect the enantioselectivity directly. Under mild reaction conditions, enantioselectivities up to 83% were obtained (25 degrees C) with ligand 1e. Systematic variation of the ligand bridge and the phosphite moiety showed that the configuration of the product is controlled by the atropisomerism of the biphenyl substituent at the phosphite moiety. The conformation of the biphenyl group, in turn, is controlled by the substituent at the chiral carbon in the bridge. Ligands with large bite angles yielded higher enantioselectivities.  相似文献   
2.
Well-crystallized kaolinite (K) was initially reacted at 60 degrees C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140 degrees C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide and aluminol groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68 degrees orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the aluminosilicate interlayers. Copyright 2000 Academic Press.  相似文献   
3.
The new quaternary thiosilicate, Li2PbSiS4 (dilithium lead silicon tetrasulfide), was prepared in an evacuated fused‐silica tube via high‐temperature, solid‐state synthesis at 800 °C, followed by slow cooling. The crystal structure was solved and refined using single‐crystal X‐ray diffraction data. By strict definition, the title compound crystallizes in the stannite structure type; however, this type of structure can also be described as a compressed chalcopyrite‐like structure. The Li+ cation lies on a crystallographic fourfold rotoinversion axis, while the Pb2+ and Si4+ cations reside at the intersection of the fourfold rotoinversion axis with a twofold axis and a mirror plane. The Li+ and Si4+ cations in this structure are tetrahedrally coordinated, while the larger Pb2+ cation adopts a distorted eight‐coordinate dodecahedral coordination. These units join together via corner‐ and edge‐sharing to create a dense, three‐dimensional structure. Powder X‐ray diffraction indicates that the title compound is the major phase of the reaction product. Electronic structure calculations, performed using the full potential linearized augmented plane wave method within density functional theory (DFT), indicate that Li2PbSiS4 is a semiconductor with an indirect bandgap of 2.22 eV, which compares well with the measured optical bandgap of 2.51 eV. The noncentrosymmetric crystal structure and relatively wide bandgap designate this compound to be of interest for IR nonlinear optics.  相似文献   
4.
Controlled self-assembly of zero-dimensional gold nanoparticles and construction of complex gold nanostructures from these building blocks could significantly extend their applications in many fields. Carbon nanotubes are one of the most promising inorganic templates for this strategy because of their unique physical, chemical, and mechanical properties, which translate into numerous potential applications. Here we report the bottom-up synthesis of gold nanowires in aqueous solution through self-assembly of gold nanoparticles on single-walled carbon nanotubes followed by thermal-heating-induced nanowelding. We investigate the mechanism of this process by exploring different graphitic templates. The experimental work is assisted by computational studies that provide additional insight into the self-assembly and nanowelding mechanism. We also demonstrate the chemical sensitivity of the nanomaterial to parts-per-billion concentrations of hydrogen sulfide with potential applications in industrial safety and personal healthcare.  相似文献   
5.
The mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent fluid is analyzed using similarity solution technique. Wall temperature and stretching velocity are assumed to have specific exponential function forms. The influence of buoyancy along with viscous dissipation on the convective transport in the boundary layer region is analyzed in both aiding and opposing flow situations. The flow is governed by the mixed convection parameter Gr/Re2. The velocity and temperature inside the boundary layer are observed to be influenced by the parameters like Prandtl number Pr, Gebhart number Gb. Significant changes are observed in non-dimensional skin friction and heat transfer coefficients due to viscous dissipation in the medium. The flow and temperature distributions inside the boundary layer are analyzed and the results for non-dimensional skin friction and heat transfer coefficients are discussed through computer generated plots.  相似文献   
6.
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号