首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   34篇
化学   210篇
晶体学   1篇
力学   7篇
数学   25篇
物理学   91篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   11篇
  2019年   15篇
  2018年   17篇
  2017年   12篇
  2016年   18篇
  2015年   24篇
  2014年   22篇
  2013年   20篇
  2012年   21篇
  2011年   25篇
  2010年   16篇
  2009年   7篇
  2008年   11篇
  2007年   14篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1937年   2篇
  1936年   2篇
  1935年   1篇
  1934年   2篇
  1932年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
1.
V K B Kota  K Kar 《Pramana》1989,32(5):647-692
The subject of spectral distribution methods where one derives and applies the locally smoothed forms of observables in nuclei is briefly reviewed. It is well understood that the local forms (with respect to energy) of the level density function, expectation values and strength densities are Gaussian, linear (or ratio of Gaussians) and a bivariate Gaussian respectively. To accomodate symmetries in the above forms, one has to deal with multivariate distributions in general; for example the angular-momentum (J) decomposition leads to a bivariate Gaussian form for the level density. These results extend to indefinitely large spaces by method of partitioning and they generate convolution forms. The origin of these remarkable spectral properties is discussed and shell model examples are given to substantiate their applicability to nuclear systems. Spectral distribution theory is a practical, usable theory because the smoothed forms are defined in terms of traces of low particle-rank operators, and the trace information propagates. Finally we discuss the application of the spectral methods for a wide range of nuclear problems; these include binding energies, orbit occupancies, electromagnetic andβ-decay sum rule quantities, analysis of operators, symmetry breaking, numerical level densities, and determination of bounds on time-reversal non-invariant part of nucleon-nucleon interaction.  相似文献   
2.
The separation of propylene-propane mixture is an energy intensive operation commercially practiced using cryogenic distillation. The separation by pressure swing adsorption has been studied as an alternative. A fixed-bed pressure swing adsorption yields the heavy component as a pure product. The product recovery and the productivity are not high. In a moving-bed process, because of the counter-current solid-gas contact, the separation achieved is similar to that of the fractionation by distillation. Although the moving-bed operation offers the upper limit for the performance of a cyclic adsorptive process, due to mechanical complexities in the handling of solids the 'simulated' moving-bed is preferred. By moving the inlet and outlet ports of streams located along the length of the bed, a moving-bed process can be realized in a fixed bed. We describe here a 'moving-port' system which permits injection or withdrawal of the fluid along the axial direction in a fixed bed. A fixed bed embedded with the moving-port systems emulates a simulated moving-bed adsorber. The proposed adsorber can fractionate a binary gas mixture into two product streams with high purities. It is similar to the Sorbex process of UOP but does not have the eluent as an additional separating agent. A parametric study indicates that high purity products and a higher productivity by an order of magnitude can be achieved with simulated moving-beds compared to the fixed beds.  相似文献   
3.
4.
5.
Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures. Results show that a novel Cu–In2O3 structured oxide can show a remarkably higher CO2 splitting rate than ever reported. Various analyses revealed that RWGS-CL on Cu–In2O3 is derived from redox between Cu–In2O3 and Cu–In alloy. Key factors for high CO2 splitting rate were fast migration of oxide ions in the alloy and the preferential oxidation of the interface of alloy–In2O3 in the bulk of the particles. The findings reported herein can open up new avenues to achieve effective CO2 conversion at lower temperatures.

Efficient activation of CO2 at low temperature was achieved by reverse water–gas shift via chemical looping (RWGS-CL) by virtue of fast oxygen ion migration in a Cu–In structured oxide, even at lower temperatures.  相似文献   
6.
7.
The stereoselective total synthesis of (?)-panaxjapyne-C was accomplished in a convergent fashion. The synthesis utilizes the readily available enantiomers l-(+)-diethyltartrate and d-(?)-diethyltartrate and involves a Cadiot–Chodkiewicz coupling reaction, and an Ohira–Bestmann reaction as the key steps.  相似文献   
8.
Two new water soluble oxovanadium(IV) complexes with formulae Na[VO(his)(met)SO4] (1) and Na[VO(gly)(met)SO4] (2), (gly=glycine his=histidine, and met=metformin) were synthesized and characterized by LCMS, UV‐Visible absorption, infrared spectra, magnetic moment, elemental analysis, thermal analysis and electronic spectral studies. The metal center was found in an octahedral geometry. DNA binding interaction of these complexes with CT DNA has been explored by UV‐Visible absorption, fluorescence, viscosity measurements and cleavage studies. Finally the binding of the complexes with CT‐DNA could be surface binding, mainly in the groove binding. The complexes were docked in to B‐DNA sequence, 5’(D*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)‐3’ retrieved from protein data bank (PDB ID: 423D), using Discovery Studio 2.1 software.  相似文献   
9.
10.
Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. For the simplest spinless fermion (or boson) systems, with say mm fermions (or bosons) in NN single particle states and interacting via kk-body interactions, we have EGUE(kk) [embedded GUE of kk-body interactions] with GUE embedding and the embedding algebra is U(N)U(N). A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different), particle addition to or removal from a given system and so on. Towards developing a complete statistical theory for transition strength densities (transition strengths multiplied by the density of states at the initial and final energies), we have derived formulas for the lower order bivariate moments of the strength densities generated by a variety of transition operators. Firstly, for a spinless fermion system, using EGUE(kk) representation for a Hamiltonian that is kk-body and an independent EGUE(tt) representation for a transition operator that is tt-body and employing the embedding U(N)U(N) algebra, finite-NN formulas for moments up to order four are derived, for the first time, for the transition strength densities. Secondly, formulas for the moments up to order four are also derived for systems with two types of spinless fermions and a transition operator similar to beta decay and neutrinoless beta decay operators. In addition, moments formulas are also derived for a transition operator that removes k0k0 number of particles from a system of mm spinless fermions. In the dilute limit, these formulas are shown to reduce to those for the EGOE version derived using the asymptotic limit theory of Mon and French (1975). Numerical results obtained using the exact formulas for two-body (k=2k=2) Hamiltonians (in some examples for k=3k=3 and 44) and the asymptotic formulas clearly establish that in general the smoothed (with respect to energy) form of the bivariate transition strength densities take bivariate Gaussian form for isolated finite quantum systems. Extensions of these results to bosonic systems and EGUE ensembles with further symmetries are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号