首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   6篇
物理学   4篇
  2022年   1篇
  2020年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The molecular dynamics of new poly (ω‐dodecalactam‐co‐ε‐caprolactam‐co‐propylene oxide) copolymers (DL/CL/PAC) has been investigated by using dynamic mechanical thermal analysis (DMTA) and dielectric relaxation spectroscopy (DRS) measurements. The copolymers were synthesized via anionic polymerization of relevant lactams activated with carbamoyl derivatives of telechelic hydroxyl terminated polypropylene oxide with isophorone diisocyanate (PAC). The calorimetric, X‐ray diffraction, and DMTA measurements were performed to recognize the influence of the composition ratio and the type of PAC on the physical, thermal, and mechanical properties of the synthesized copolymers. The DRS was used to study the frequency dependence of the dielectric permittivity of some isotherms from ?110 to 145 °C. Copolymerization of ε‐caprolactam with about 10 wt % ω‐dodecalactam results in a copolymer that has lower water absorption, a melting point close to that of polyamide 6 and has a high enough degree of crystallinity in respect to high storage modulus. Five dielectric relaxations have been observed in the dielectric spectra, three at lower temperature and two at higher temperature. The copolymers have two glass transition temperatures for polyamide segments and polyether blocks, indicating microphase separation in the copolymers. Other studies directed toward molecular dynamics of polyamide DL/CL/PAC copolymers have not been reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
2.
Synchrotron radiation (SR), as a result of its high-intensity, brilliant, monochromatic, and collimated beams, is becoming one of the most crucial components of research in various fields of materials science such as nanomaterials, biomaterials, and energy materials. SR-based characterization methods can be employed to analyze different systems such as powders, thin films, and bulk forms having complex crystalline or amorphous structures. In this review, peculiarities of SR are briefly explained. Moreover, various techniques carried out utilizing this instrument for material characterization such as X-ray powder diffraction, grazing-incidence X-ray diffraction, small/wide-angle X-ray scattering, X-ray absorption spectroscopy, different techniques of X-ray imaging, X-ray photoelectron spectroscopy, and X-ray microprobes/nanoprobes are presented. As a result, by shedding light on the advantages of SR and its superiority to the equivalent laboratory experiments, researchers are recommended to exploit the capabilities of this invaluable tool in their materials characterization.  相似文献   
3.
4.
L-cysteine is one of the most versatile biomolecules with a unique metal-binding ability. L-cysteine has an outstanding role in the bioelectronics field as a linker between proteins of biomolecules and metal electrodes of the inorganic metals through multiple functional groups. The interface electronic structures between L-cysteine with metals deserve further investigation for applications in bioelectronics. However, the interface electronic structures of L-cysteine and metals have not been well understood. We have previously reported the existence of a new state between the highest occupied molecular orbital (HOMO) of L-cysteine and the Fermi level of the metals for L-cysteine/Au(111), L-cysteine/Ag(111), and L-cysteine/Cu(111) using photoemission spectroscopy and attributed the formation of the new state to an interaction of the d band with HOMO of L-cysteine. In this study, the electronic structure at the interfaces of L-cysteine on a Palladium (Pd) surface is investigated by ultraviolet photoemission spectroscopy (UPS) using synchrotron radiation including work function, secondary electron cutoff (SECO), and HOMO onset; the position of an interface state, charge injection barrier, and ionization energy are estimated. It is observed that thin-film spectra of L-cysteine on Pd surfaces in the valance top region are different from the L-cysteine thick films, and this can be attributed to an interaction between a sulfur-originated state of L-cysteine HOMO with Pd d orbitals. Also, a 0.6-eV SECO shift is estimated due to the charge transferring between L-cysteine and Pd. The results of SECO further confirm the weakening of the Pd–sulfur bond with increasing L-cysteine coverage on Pd.  相似文献   
5.
Adsorption behavior of atomic deuterium on a hexagonal boron nitride (h-BN) thin film is studied by photon-stimulated ion desorption (PSID) of D+ and near edge X-ray absorption fine structure (NEXAFS) at the B and N K-edges. After the adsorption of atomic deuterium, D+ desorption yield η() shows clear enhancement at the B K-edge and almost no enhancement at the N K-edge. NEXAFS spectra show a large change in the B K-edge and a small change in the N K-edge after the adsorption. We propose selective adsorption of atomic deuterium on the h-BN thin film based on the experimental results, and mention the effectiveness of applying the PSID method with X-ray to study hydrogen storage materials.  相似文献   
6.
The adsorption of atomic hydrogen on hexagonal boron nitride (h-BN) is studied using two element-specific spectroscopies, i.e., near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS). B K-edge NEXAFS spectra show a clear change in the energy region of the π* band before and after reaction with atomic deuterium. On the other hand, N K-edge NEXAFS spectra show only a little change. B 1s XPS spectra show a distinct component at the low binding energy side of a main component, while N 1s XPS spectra show peak broadening at the high binding energy side. These experimental results are analyzed by the discrete variational Xα method with a core-hole effect and are explained by a model in which hydrogen atoms are preferentially adsorbed on the B sites of h-BN. Based on the experimental and theoretical results, we propose a site-selective property of BN material on adsorption of atomic hydrogen.  相似文献   
7.
Often the rate of passage of gaseous molecules through model zeolites is too small to be computed directly. An estimate for the rate of passage of CCl4 through the 8-ring window in a model of zeolite A has been obtained by combining a direct evaluation of the free energy profile and an adaptation of the rare events method. First the free energy profile is found from a direct evaluation of the canonical partition function at high dilution and the transition state theory rate constant obtained. The dynamic correction factor is then estimated from molecular dynamics runs and used to compute the actual rate keff. The method is used to estimate the rate of passage through the 8-ring window in a rigid model of zeolite A, and the results are compared with those obtained from rigid models with expanded windows and from the flexible model. Even a small expansion in the 8-ring window diameter increases the rate significantly, but the changes associated with a flexible cage are small.  相似文献   
8.
Silver nanoparticles form promising template for designing antimicrobial agents against drug resistant pathogenic microorganisms. Thus, the development of a reliable green approach for the synthesis of nanoparticles is an important aspect of current nanotechnology research. In the present investigation, silver nanoparticles synthesized by a soil Bacillus sp. were characterized using UV–vis spectroscopy, FTIR, SEM, and EDS. The antibacterial potential of biosynthesized silver nanoparticles, standard antibiotics, and their conjugates were evaluated against multidrug-resistant biofilm-forming coagulase-negative S. epidermidis strains, S. aureus, Salmonella Typhi, Salmonella Paratyphi, and V. cholerae. Interestingly, silver nanoparticles (AgNPs) showed remarkable antibacterial activity against all the test strains with the highest activity against S. epidermidis strains 145 and 152. In addition, the highest synergistic effect of AgNPs was observed with chloramphenicol against Salmonella typhi. The results of the study clearly indicate the promising biomedical applications of biosynthesized AgNPs.  相似文献   
9.
In this study, the formation of Ag–S bond was systematically elucidated by thickness-dependent ultraviolet photoelectron spectroscopy (UPS) in order to understand the L-cysteine interaction with silver surface. A clean Ag(111) as the model system for silver surface was used, and L-cysteine films on silver substrate were formed by vacuum evaporation. The orbital configurations at the interface was estimated including work function, secondary electron cutoff (SECO), highest occupied molecular orbital (HOMO) onset, position of an interface state, charge injection barrier, and ionization energy. A clear spectral feature was appeared in between Fermi edge and HOMO of L-cysteine, and the feature can be attributed to the formation of Ag–S bonding. In the case of SECO, the maximum shift was 0.46 eV to the higher binding energy side at the nominal thickness of 1 Å. However, from the nominal thickness of 2 Å, SECO started to shift to the lower binding energy side, and at 16 Å, the SECO shifted to a value of around 0.4 eV to the lower binding energy side to almost cancel the initial vacuum level shift. This behavior can be attributed to weakening of the silver-sulfur bond with increasing of L-cysteine coverage referring to the literature. The photoelectron yield spectroscopy (PYS) was also performed as an additional spectroscopic work, which exhibited that the work function of silver once decreased and then recovered at low coverage. This behavior can also be assigned to a weakening the interaction of L-cysteine with silver by increasing of L-cysteine coverage.  相似文献   
10.
KATJA KRüGER 《Pramana》2012,79(4):563-578
Recent QCD results from electron?Cproton interactions at HERA and JLAB are presented. Inclusive cross-section measurements as well as studies of the hadronic final state like jet production or the production of heavy quarks are discussed. The results are compared with perturbative QCD predictions and their impact on the determination of the parton density functions of the proton as well as of the strong coupling ?? s is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号